2021-2022 Better Buildings WEBINAR SERIES

Register Today: betterbuildingsolutioncenter.energy.gov/better-buildings-webinar-series
Work Smarter, Not Harder: Creative Project and Process Implementation

March 1\textsuperscript{st} 2022
11:00 am – 12:00 pm EDT
Clifton Yin
Energy and Sustainability Programs Manager / ICF
Agenda

1. Sam Schneider – Saint-Gobain
2. Celanese – David Reid
3. General Motors – Bob Baird and Paul Hartmeister
4. Oak Ridge National Laboratory - Subodh Chaudhari
Please go to [www.slido.com](http://www.slido.com) using your mobile device, or by opening a new window

Enter Event Code

#DOE
Welcome poll

We want to learn about you!

Please go to www.slido.com and enter code #DOE to respond
Today’s Presenters

Sam Schneider  
Saint-Gobain North America

David Reid  
Celanese

Paul Hartmeister  
General Motors

Bob Baird  
General Motors

Subodh Chaudhari  
Oak Ridge National Laboratory
Sam Schneider
Sustainability and LCA & Reporting Manager/ Saint-Gobain North America
FROM ROYAL MANUFACTORY TO INDUSTRY

The XVIIth century

FROM ROYAL MANUFACTORY TO INDUSTRY

KEY DATE

- 1665: Louis XIV signed the Patent, thereby officially creating the Manufacture des Glaces de Versailles, one of the 20 royal manufactures founded that year.

GROW & IMPACT

GROW & IMPACT

SAINT-GOBAIN

SAINT-GOBAIN

SAINT-GOBAIN
My role…

**Sustainability and LCA & Reporting Manager**
- Manages SGNA’s LCA program
- Conduct Life Cycle Assessments for our products

**Previous Role - Process Sustainability Engineer**
- Provided technical expertise and best practice sharing on Water/Waste/Energy projects
- Supported our R&D, purchasing, and businesses in achieving Scope 3 reductions and circular economy
- Facilitated Sustainability Network
WE ARE ENTERING A NET-ZERO CARBON ECONOMY

>70% worldwide GDP committed to carbon neutrality targets

>€1 trillion of government stimulus post-COVID focused on renovation & construction

>80% share of investors with ESG policy (active or under development)

Sources: World Bank (IFC – Green building), World Green Building Council, Country stimulus announcements, HSBC
SUSTAINABLE CONSTRUCTION IS ESSENTIAL TO A NET-ZERO CARBON ECONOMY

40% of global CO₂ emissions linked to construction

×3 increase in resource consumption in the last 50 years

+2bn urban population in emerging markets in the next 30 years

Making the World a Better Home

BE THE WORLDWIDE LEADER IN LIGHT & SUSTAINABLE CONSTRUCTION

GROW & IMPACT
2021-2025
Major U.N. climate report warns of "extreme" and "unprecedented" impacts

BY JEFF BERARDELLI

08/09/2021 / 7:39 AM / CBS NEWS

2050 NET ZERO CARBON

SAINT-GOBAIN NET-ZERO CARBON BY 2050

09/24/2019

GROUP / SUSTAINABLE

During the UN Climate Action Summit held on September 23, Saint-Gobain signed the pledge of the Global Compact “Business ambition for 1.5°C”, committing itself to reach net-zero emissions by no later than 2050 in line with the goal to limit the rise of global temperature to 1.5°C. This ambition is part of the strategy that the Group has been deploying for several years to limit its environmental impact and contribute to decarbonize its markets.

- Read our press release
- Take a look at an event by Pierre André de Chalendar, Chairman and CEO of Saint-Gobain on LinkedIn
- Discover our story “A roadmap for zero emissions buildings is here” including an interview with Ed Mazria, President, Architecture 2030

Global Carbon Emissions from Fossil Fuels, 1900-2014

National Health Topics

CDC

Diseases Carried by Vectors

Allergens and Pollen

Food Security

Mental Health and Stress-Related Disorders

Floods

Temperature Extremes

Wildfires
OUR OBJECTIVES FOR 2030 COMPARED TO 2017

-50% Industrial water withdrawal
0 Water discharge in area with extremely high water risk
-33% Scope 1 & Scope 2
-16% Scope 3
-80% Non valorised production residue
+30% Virgin raw materials avoided
30% of recycled or bio-sourced content
100% recyclable packaging
100% LCA for all of Group product ranges
NORTH AMERICAN SUSTAINABILITY NETWORK
SUSTAINABILITY

Everyone Plays A Role In The Network

SAINT-GOBAIN
*Conference and Training Images from before COVID-19*
INTERNAL TRAINING AND RESOURCES

CLIMATE 2050 TRAINING
ECOMEDES
YAMMER
NEWSLETTER
TEAMS GROUP

BEST PRACTICE LIBRARY - OPERATIONS
BEST PRACTICE LIBRARY - EMPLOYEE ENGAGEMENT
MONTHLY TECHNICAL WEBINARS
2020 EHS&S COLLABORATIVE
2021 CARBON SUMMIT

Recordings of the Virtual Event
EXTERNAL TRAINING AND RESOURCES

DOE BETTER PLANTS
ONLINE LEARNING SERIES

DOE TECHNICAL
FOCUS AREAS

SCHNEIDER ELECTRIC
UNIVERSITY

VIRTUAL IN-PLANT TRAININGS
(15+ HOUR TRAININGS)

GREEN BUILDING
WEBINARS ON DEMAND

DIRECT CURRENT – AN
ENERGY.GOV PODCAST

TAD TALKS
SUSTAINABILITY

SHIFTING PARADIGMS TO
SOLVE CLIMATE CHANGE

EARTH DAY QUIZZES
SUSTAINABILITY SUMMIT

WWE AWARDS

Energy  Carbon  Waste  Water  Overall

Project Belts:

Overall  Waste  Water  Energy
Watch the Saint-Gobain 2021 WWE Awards Recap here!
COMPETITIONS – 2018 AND 2020

2018

WHEN: October 29 – December 31
WHO: Open to all SGNA, with teams of up to 5
WHAT: A three-month, voluntary competition to see who can identify and fix the most leaks, and make improvements to their compressed air system (both in operations and management).

2020

WHEN: Feb 17 – May 29
WHO: Open to all SGNA, with teams of up to 6
WHAT: A 3.5 month, voluntary contest which teams could use the scoresheet to earn points by answering sustainability questions, evaluating the energy and financial saving of projects in the DOE MEASUR tool, as well as using SGSN resources such as recorded webinars.
COMPETITIONS - 2021

EVERY DROP COUNTS
Employee Conservation @ Home Contest

ALL EMPLOYEES ELIGIBLE TO PARTICIPATE!

613
Total activities completed during the contest.

0.06
Million gallons would be saved annually per employee that participated, if they keep up these actions for a year.

892
Million gallons would be saved annually if all employees in North America participated in water conservation efforts at home for a year.

1,351
That would be the equivalent of Olympic swimming pools.

Employee Conservation @ Home Contest
Meet the Contest Winners

Calle Bailey-Wickins
Rodine Christian
Kelly Lavigne
Jackie Nizolek
Amanda Philbrick
Tracy Smoker
Patricia Ware

Smart Home WiFi Water Monitor and Leak Detector
Smart Sprinkler Controller
WWF Adoption of Two Aquatic Animals of Employee Choice (and Cute Plush Toys!)
Work Smarter, Not Harder: Creative Project and Process Implementation
Sustainability Capital Project Design Checklist

David Reid CEM P.Eng
Who is Celanese?

We are a global chemical and specialty materials company that engineers and manufactures a variety of products essential to everyday living.

- Global headquarters in Dallas, Texas, USA
- $5.7 billion in net sales in 2020
- Number 477 on the 2021 FORTUNE 500 list
- Approximately 7,700 employees globally
- 40+ manufacturing facilities; operations in 19 countries around the world
- Three leading businesses: Engineered Materials, Acetylcs and Acetate Tow
- Innovation is at the core of our differentiated business model
Move from Energy to Sustainability

► Expanded ESG focus
► Competitive business advantage
► Aligned with:
  – Investors, Customers, Regulators
  – US SEC setting ESG guidance
► Energy – GHG Nexus
► Driving value with a broader sustainability mindset
  – Incorporation of ESG and Environmental Sustainability into many aspects of our business

No issue ranks higher than climate change on our clients’ lists of priorities.

We know that climate risk is investment risk. But we also believe the climate transition presents a historic investment opportunity.

Larry Fink – CEO Blackstone

On 14 July, the European Commission adopted a set of proposals to make the EU’s climate, energy, transport and taxation policies fit for reducing net greenhouse gas emissions by at least 55% by 2030

A European Green Deal | European Commission (europa.eu)

SEC Chair Gensler says investors want mandatory disclosure on climate risks

SEC Chair Gensler: Investors want mandatory disclosure on climate risks (cnbc.com)

We can still fix this. But the opportunity to do so will not last for long. We must start today.

Greta Thunberg
Impetus for a Design Sustainability Checklist

► Need to be evaluating energy and GHG impact of projects that have 20–30-year lifespan - TODAY

► Need to incorporate life cycle energy and GHG review into project scoping

► Need to design energy efficiency, GHG intensity, water use, waste efficiency, and other sustainability factors into capital projects as they are initially built

► Need to get the project design, and operations teams to think about sustainability using a consistent methodology as part of Energy and Sustainability management systems?
Process

► Sub team of the Energy Council
  - Inclusion of Project SME’s
► Feedback from other companies
► Input from ISO50001 sites
► Alignment with leadership
► Communication to site project teams

Imagine if:

- Project engineers are fully engaged in a sustainability thought process from the beginning of project scoping
- All projects are built with optimum life cycle sustainability and best available technology from Day 1
- Leaders are requiring sustainability options prior to approving projects
Project Sustainability Considerations Checklist

► Sustainability Impact
  - Amount of energy, water, waste and CO2e impact due to the project

► Manufacturing Process Technology
  - Is a more sustainable manufacturing process technology being installed than previous?

► Equipment Overall Sustainability Efficiency
  - Is equipment specified to be as efficient as economically feasible?

► Measurement Systems
  - Are all significant sustainability usage components measured, recordable and controllable?

► Sustainability Considerations
  - Does this project consider other sustainability factors?
How it is Used

► Completed early in the design process as part of design review
  - Project Work Process
  - Technical Design Review Process

► Reviewed by the Unit technology leader and site energy champion

► Based on the checklist responses
  - Opportunities to improve sustainability can be defined and documented
  - Life cycle cost considerations included in analysis
  - Improved decisions can be made to incorporate improvements before approvals

► Part of project approval process
  - Site and Corporate
  - Improved decisions on options that make sense for the business
Impact

- Improvement of Energy and Sustainability management system driven by the Energy Council
- Forces review and understanding of magnitude of environmental sustainability impact of projects
- Promotes effective energy and sustainability review using a consistent methodology
- Drives consideration of more sustainable manufacturing technology early in the design phase of projects
- Promotes improved decision making for inclusion of sustainability efficiencies in a project at the approval step
Training

Sustainability Check for Capital Project Design

This course explains the importance of designing for sustainability in manufacturing and how to evaluate the sustainability impact of capital projects.

2. Manufacturing Process Technology

Is the process technology being installed more sustainable than the previous one?

Watch the short video on this section.

- On-Line training
- Part of: Celanese Manufacturing Technical Training Program, *M-Train*
- Content, Videos, Comprehension

All projects greater than $50K USD must have a completed sustainability checklist.

The next section explains how to fill out the checklist, and what to expect during the review and approval process.

The sustainability checklist includes five sections:
Takeaway

- On Going Improvement of Sustainability Management Systems
  - Promotes effective energy and sustainability review using a consistent methodology
  - Drives sustainability consideration and better decision making early in the design phase of projects
  - Design sustainability into capital projects

- Capital Project Sustainability Checklist
  - Promotes effective energy and sustainability review using a consistent methodology
  - Drives sustainability consideration and better decision making early in the design phase of projects
  - Design sustainability into capital projects

- Next Steps
  - Keep Improving the checklist with new ideas
  - Set expectations for project approvers to evaluate the checklist findings and options developed
Paul Hartmeister
Energy Sustainment Manager/ General Motors

Bob Baird
Energy Sustainment Manager/ General Motors
General Motors
Energy and
Carbon
Optimization
(ECO) Toolbox

March 1, 2022
Paul Hartmeister
Bob Baird
## Best Practices - ECO Toolbox

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>Time to Complete</th>
<th>Completed? (Enter Number 0 - 100 or &quot;Not Applicable&quot;)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Compressed Air Off</td>
<td></td>
<td>0%</td>
</tr>
<tr>
<td>2</td>
<td>HVAC Off</td>
<td></td>
<td>0%</td>
</tr>
<tr>
<td>3</td>
<td>Hydraulic Pumps Off</td>
<td></td>
<td>0%</td>
</tr>
<tr>
<td>4</td>
<td>Lights Off</td>
<td></td>
<td>0%</td>
</tr>
<tr>
<td>5</td>
<td>Scrap Conveyors Off</td>
<td></td>
<td>0%</td>
</tr>
<tr>
<td>6</td>
<td>Water Off</td>
<td></td>
<td>0%</td>
</tr>
<tr>
<td>7</td>
<td>Compressed Air Off</td>
<td></td>
<td>0%</td>
</tr>
<tr>
<td>8</td>
<td>Conveyors Off</td>
<td></td>
<td>0%</td>
</tr>
<tr>
<td>9</td>
<td>HVAC Off</td>
<td></td>
<td>0%</td>
</tr>
<tr>
<td>10</td>
<td>Lights Off</td>
<td></td>
<td>0%</td>
</tr>
<tr>
<td>11</td>
<td>Water Off</td>
<td></td>
<td>0%</td>
</tr>
</tbody>
</table>

**Stamping Department**

**Bodyshop Department**
## Potential Project Thought Starters

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Air Seal on Scrap Conveyor</td>
</tr>
<tr>
<td>2</td>
<td>Compressed Air Leak Process</td>
</tr>
<tr>
<td>3</td>
<td>Departmental KPI MEI</td>
</tr>
<tr>
<td>4</td>
<td>Energy included in level 4/5 BPD</td>
</tr>
<tr>
<td>5</td>
<td>Exhaust Fans Secured in Heating Season</td>
</tr>
<tr>
<td>6</td>
<td>HMI Screen Sleep</td>
</tr>
<tr>
<td>7</td>
<td>Minimize CA pressure</td>
</tr>
<tr>
<td>8</td>
<td>Non-Fire hose basement cleaning</td>
</tr>
<tr>
<td>9</td>
<td>Non-Production Hydraulic Shut Off</td>
</tr>
<tr>
<td>10</td>
<td>Panel Coolers Set 30 deg C</td>
</tr>
<tr>
<td>11</td>
<td>Task Lights and Conveyors on TSC</td>
</tr>
<tr>
<td>12</td>
<td>TIS / JES followed for Non-Production</td>
</tr>
<tr>
<td>13</td>
<td>TV Monitor Andon Boards</td>
</tr>
</tbody>
</table>
### Idea Tracker - Roadmap

#### Project Number | Project Type | Project Name | Current State | Future State | System | Equipment | Plant Oper Mode | Priority |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>51</td>
<td>Treasure Hunt</td>
<td>Seal building envelope S&amp;HV, Door, 32 bays, Air gap on the top side of the rapid roll door, G&amp;F.</td>
<td>Roof openings outside air infiltration</td>
<td>Eliminate air infiltration</td>
<td>Building Envelope</td>
<td>Other</td>
<td>247</td>
<td>1</td>
</tr>
<tr>
<td>51</td>
<td>Treasure Hunt</td>
<td>Seal building envelope S&amp;HV, Door, 32 bays, Air gap on the top side of the rapid roll door, G&amp;F.</td>
<td>Roof openings outside air infiltration</td>
<td>Eliminate air infiltration</td>
<td>Building Envelope</td>
<td>Other</td>
<td>247</td>
<td>1</td>
</tr>
<tr>
<td>57</td>
<td>Treasure Hunt</td>
<td>Sleep Mode for CNCs during idle periods</td>
<td>No sleep modes</td>
<td>Install sleep modes</td>
<td>Process</td>
<td>Controls</td>
<td>Normal Production</td>
<td>1</td>
</tr>
<tr>
<td>60</td>
<td>Treasure Hunt</td>
<td>Increase operating Selcond of HVAC and Process Chilled Water (Increase to 50°F in non-cooling season)</td>
<td>Heating Season Chilled Water set point is 48°F</td>
<td>Heating Season Chilled Water set point will be 50°F</td>
<td>Process</td>
<td>Controls</td>
<td>Normal Production</td>
<td>1</td>
</tr>
<tr>
<td>61</td>
<td>Treasure Hunt</td>
<td>Retrofit Office Fluorescent lights for LED</td>
<td>Current lights are T12 and T10</td>
<td>All lights will be LED and they will have at least 30% energy usage</td>
<td>Building Envelope</td>
<td>Other</td>
<td>Normal Production</td>
<td>1</td>
</tr>
<tr>
<td>62</td>
<td>Treasure Hunt</td>
<td>No Heat for Production Washers</td>
<td>Washers are heated</td>
<td>No heat for washers</td>
<td>Process</td>
<td>Process Equipment</td>
<td>Normal Production</td>
<td>1</td>
</tr>
</tbody>
</table>
• Energy Conservation Measure (ECM) Evaluation
  • Refine ideas
  • High level Up/Down review
  • Determine funding sources and incentives
  • Internal or External
Project Development and Execution

Implementation

Explore means to complete work
- Develop concept report

Establish SOW, Engineer, Bid, Award
- Competitive bids
- Selected EPC Contractor
- Other

Coordinate install with production and site requirements
- Schedule development and coordination

Project Completion and buyoff
Project Closure and Opportunities

Validation

1. Complete Incentive Valuation
2. Project Measurement and Validation Process
3. Update ECO Toolbox with Savings
4. Use ECO Toolbox to Share Successful ECM’s with other sites
Subodh Chaudhari
Technical Account Manager / Oak Ridge National Laboratory
Work Smarter, Not Harder: Creative Project and Process Implementation

DOE’s New Implementation Toolkit

Subodh Chaudhari

March 1, 2022
Resources to Identify Projects

• **Frameworks for project identification**
  • Industrial Assessment Center
  • In-Plant Trainings
  • Treasure Hunt Programs
  • Virtual INPLTs
  • Utility Efficiency Programs

• **Other internal mechanisms**
  • Suggestion/ideas box
  • Brainstorming sessions
  • Company competitions
  • Internal audit teams / workgroup meetings

• **Purpose of this seminar is focus on the next step**

---

Project Hopper

- Treasure Hunts / In-Plant Trainings
- Energy Assessments
- Utility Efficiency Programs

Accepted/Implementable Project
Energy Projects Implementation

• Project implementation is key to success of energy management and sustainability programs

• Traditionally, implementation is a follow up step to projects identification phase

• For great results - projects identification step should be seen as a pre-step to implementation

Comprehensive Projects Identification → Selected projects implementation → Implementable Projects Identification → All projects implementation

Traditional Approach

Recommended Approach
Barriers to Energy Efficiency Projects Implementation

Buy-in
- Program / project level agreement
- Priorities

Economic/ Financial
- Internal competition for capital
- Access to capital

Communication and Engagement
- Unclear roles and lack of ownership
- Project tracking and progress updates
- Recognition and reward structure

Informational
- Uncertainty of savings
- Lack of expertise / inhouse skills

Implementation Statistics
- IAC Data: ~20,000 energy assessments, ~150,000 Recommendations made
- Implementation rate ~50%
- Common reasons for non-implementation
  - Technical disagreement (29.2%)
  - Process/facility/operation changes/lack of staff (25.2%)
  - Cash flow (24.1%)
  - Feasibility (12.5%)
  - Communication (9%)
- Implementation rate observed through old DOE initiative (Save Energy Now-ESAs) was ~20%
Implementation Toolkit - Overview

Energy Efficiency Program

Pre-Opportunity Identification
- Energy Survey Checklist
- Opportunity Identification To Do

Opportunity Identification
- Do Nothing Tool
- Implementation Principles Checklist
- Implementation Principles Resources
- Plant Personnel Roles and Expectations
- Corporate Gap Analysis Tool

Post-Opportunity Identification

Pre-implementation
- Implementation Tracker Tool
- Project Tracker Tool

During Implementation
- Savings Thermometer
- 100% Completion Award
- Letter of Appreciation
- Communication of Achievements

Post Implementation

Do Nothing Tool

- A Tool to make the case for energy efficiency commitment
- Presents comparative analysis over 10 years
  - Energy efficiency improvement
  - Business-As-Usual i.e. Do Nothing

**Detailed Method**

**Annual Cost Savings**

- Cost (USD): $1,555,026
- Cost with Energy Reduction: $119,477

**Cumulative Cost Savings**

- Cost (USD): $17,105,282
- Cost Reduction (USD): $1,754,251

**Annual CO₂ Emission Reduction**

- Average Annual Emissions Reduction (MT): 8,701
- Average Annual Energy Saving (MMBtu/yr): 119,477

**Cumulative CO₂ Emission Reduction**

- Emission Reduction (MT): 95,707
- Emission Reduction (MMBtu): 1,754,251
Prize Tool

• Innovative approach to create buy-in
• Energy program commitment
• Energy projects
• Helps set up a **business case**
• Answers “What’s in it for me?” for the corporate or plant level management
• Compares energy savings with necessary new sales
• Illustrates value by showing sales effort necessary

The "Prize" Tool

To get senior management attention you should identify the “Prize”. This will answer the question “What’s in it for me?” (WII FM: Management’s favorite radio station)

The following describes a method to identify the “Prize”. Use space in the appropriate box to plug in the values for your company and calculate your “Prize”.

<table>
<thead>
<tr>
<th>Sr. Task Description</th>
<th>Calculation / Data</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Determine the plant’s annual energy expense ($)</td>
<td>$15,000,000</td>
<td>Annual energy expense of the plant is, $15,000,000</td>
</tr>
<tr>
<td>Set annual energy expense reduction goal (%)</td>
<td>3%</td>
<td>3% Annual reduction in energy expense means total reduction will be 3% over this goal horizon.</td>
</tr>
<tr>
<td>Set the energy expense reduction goal horizon in years (yrs)</td>
<td>5 years</td>
<td>The horizon for this energy management goal is 5 years.</td>
</tr>
<tr>
<td>Multiply the annual expense by the cumulative goal to get the $ savings in the last year ($)</td>
<td>$2,250,000.00</td>
<td>The projected annual savings after achieving this goal are: $2,250,000</td>
</tr>
<tr>
<td>Determine the plant’s annual revenue or sales ($)</td>
<td>$200,000,000</td>
<td>The plant’s annual sales revenue is, $200,000,000</td>
</tr>
<tr>
<td>Determine the plant’s annual net profit ($)</td>
<td>$20,000,000</td>
<td>The plant’s annual profit is $20,000,000</td>
</tr>
<tr>
<td>Determine the plant’s margin on sales ($) by dividing annual net profit by annual revenue ($)</td>
<td>10.0%</td>
<td>The plant’s margin on sales is, 10.0%</td>
</tr>
<tr>
<td>Divide the savings (Step 4) by the margin (Step 7) to identify equivalent sales $ required to provide the same impact on the &quot;bottom line&quot; ($)</td>
<td>$22,500,000</td>
<td>Equivalent sales dollar required to provide the same impact on the &quot;bottom line&quot; is, $22,500,000</td>
</tr>
<tr>
<td>Determine price per unit / size of average sale ($) (unit)</td>
<td>$10,000</td>
<td>The price per unit or the usual size of average sale ($) (unit) is, $10,000</td>
</tr>
<tr>
<td>Divide equivalent sales ($) (Step 8) by unit price (Step 9) to identify equivalent unit sales</td>
<td>2,250</td>
<td>2,250 Equivalent additional sales are necessary to justify not pursuing this energy efficiency goal.</td>
</tr>
</tbody>
</table>

Energy savings directly go to bottom line improvement

Revenue Generation

Energy Cost Savings

The “Prize” of the annual energy reduction of 3% is $2,250,000 which is equivalent to increased revenue of $22,500,000 or sales of 2,250 extra units.
Corporate Gap Analysis Tool

- Supports the gap analysis in realized efficiency gains and identified energy reduction target
- Helpful in tracking implementation follow up
- Can help determine “Cost of Delay” in during implementation phase

Cost of Delay helps to underscore the urgency of implementation
Next Steps

- Make use of DOE resources to populate “project hopper”
- Integrate implementation resources
- Utilize implementation and tracking tools
- Realize success through higher implementation

Access the Implementation Guidance Toolkit - 
https://betterbuildingssolutioncenter.energy.gov/better-plants/implementatio
-guidance-toolkit
Q & A

Submit Questions
www.slido.com event code #DOE
2021-2022 Better Buildings WEBINAR SERIES

REGISTER TODAY: betterbuildingssolutioncenter.energy.gov/bbws
Join industry experts and practitioners in learning more about the state of solar in the commercial and industrial (C&I) market. We will share solar lease practices that ensure both building owner and system owner get the biggest bang for their buck and optimize roof space for solar potential. Speakers will also touch on Community Solar and how this strategy can be scaled to accommodate large commercial and industrial portfolios.
Better Buildings, Better Plants Summit

MAY 17-19 2022

SAVE THE DATE

Learn more: betterbuildingssolutioncenter.energy.gov/summit
Additional Questions?

Please Contact Us

Follow us on Twitter
@BetterBldgsDOE

Follow us on LinkedIn
Company/Better-Buildings

Better Buildings Solution Center
https://betterbuildingssolutioncenter.energy.gov/

Program Support
BetterBuildings@retechadvisors.com

David Reid
Celanese
david.reid@celanese.com

Bob Baird
General Motors
bob.k.baird@gm.com

Sam Schneider
Saint-Gobain North America
Samantha.Schneider@saint-gobain.com

David Reid
Celanese
david.reid@celanese.com

Subodh Chaudhari
Oak Ridge National Laboratory
chaudharisa@ornl.gov

Clifton Yin
ICF International
cifton.yin@icf.com