MAY 17-20 2021

Better Buildings®
U.S. DEPARTMENT OF ENERGY

SUMMIT
A VIRTUAL LEADERSHIP SYMPOSIUM

Learn more: betterbuildingssolutioncenter.energy.gov/summit
Innovative Strategies for Resilience at Critical Facilities

Tuesday, May 18th, 2021
2:00 – 3:15 pm
Housekeeping Items

• Please note, today’s session will be recorded and archived on the Better Buildings Solution Center. We will follow up when today’s recording and slides are made available.

• Attendees are in listen only mode, meaning your microphones are muted. If you experience any audio or visual issues anytime throughout today’s session, please send a message in your “chat” window located on the bottom of your zoom panel.
Shannon Zaret
U.S. Department of Energy
Weatherization & Intergovernmental Programs Office
Agenda

1. Welcome and Introduction
3. Expert Insights: *Wastewater Treatment Facilities* – Jason Grant, Miami-Dade County
5. Q&A Session
Please go to www.slido.com
using your mobile device, or by opening a new window

Enter Event Code

#DOE
Poll #1

What sector are you from?
Poll #2

Where are you joining us from today?
Poll #3

What critical facilities do you work with the most?
Today’s Presenters

Jim Henry
Iron Mountain Data Centers

Jason Grant
Miami-Dade County Water & Sewer Department

Chris Halpin
NV5 Energy Efficiency Services
Jim Henry
Iron Mountain Data Centers

Submit Questions
www.slido.com event code #DOE
Iron Mountain Data Centers

- 14 Facilities across 4 countries
- **Global** ISO 50001 Certification
- **Global** ISO 14001 Certification
- **Global** ISO 27001 Certification
- ISO 45001 implemented at (3) sites
- Also compliant with NIST 800-53/FISMA HIGH, PCI-DSS, HITRUST, SOC 2, HIPAA

Iron Mountain Data Centers, Manassas Campus, Prince William County, VA

Jim Henry, CISA, CISM
Manager, Global Compliance
What is a data center?

- Provide power and internet connectivity to customers for their IT gear (servers, storage arrays, compute)
- Secure highly confidential information, and ensure that availability and uptime is 100%, without fail
- A large majority of customers utilize data centers for Business Continuity and Disaster recovery purposes, which depend largely on well thought out plans and processes for availability
- Data centers support: Tech & Entertainment Platforms, Hospitals, Banks/Finance, Telecommunications, Government & Other Regulated Sectors
Energy Use, Efficiency, and Improvements

Geothermal cooling underground lake at WPA-1

Cold aisle containment at WPA-1

Beta testing containment at AZP-2
Energy Use, Efficiency, and Improvements
ISO 50001 and Resiliency

- Knowing and reviewing relevant variables affecting SEU
- In depth knowledge of energy sources and dependency per source
- Increased emphasis on significant energy users (SEUs) and associated upkeep/maintenance
- Monitoring equipment for energy performance and forecasting energy performance for the EnMS
- Top Management involvement, and requirement to continually improve
Track diesel use and emissions

Track UPS output and trends

Track utility/service entrance use

35KV VISTA Switchgear “A”

Transformer A

Main Switchgear A

UPS A1 750KW

UPS B1 750KW

UPS Bypass Switchboard

3 STS’s

3 PDU’s

Track PDU use and trends

35KV VISTA Switchgear “B”

Transformer B

Main Switchgear B

UPS B2 750KW

UPS Bypass Switchboard

3 STS’s

3 PDU’s
Operationalize incident/issue/corrective action reporting for SEUs that can trend over time

Track components of SEUs for adequate maintenance activities and replacement plans in order to reduce break/fix risk and capital-intensive projects that “appear”

EnPI’s can be valuable for both efficiency reporting, and risk management

Predicting energy use can quantify uncertainty and risk

ISO 50001 can serve as an excellent gap analysis tool for M&A

Adopting the ISO 50001 standard can act as a “gateway” to other valuable standards like ISO 14001, ISO 22301, and ISO 45001

Discover opportunities for improvement and raise concerns to leadership

Reassurance for containing operations during periods of stress
Jason Grant
Miami-Dade County Water & Sewer Department

Submit Questions
www.slido.com event code #DOE
OPERATIONALIZING UTILITY RESILIENCE

-a roadmap to a resilient utility of the future
MD-WASD Energy Efficiency and Energy Management Initiatives

- Ad-hoc energy efficiency projects
 - Efficient motors, pumps, LED lighting, process improvements
- Cogeneration
 - 12.8 MW of cogeneration capacity using biogas
 - Waste heat for anaerobic sludge digestion
- EnergyCAP - utility billing management system
- Wastewater Energy Master Plan
 - Created as part of USDOE SWIFt Accelerator
 - Energy Management System (EnMS) development
 - ISO 50001 development
 - initiating with USDOE ISO 50001 Ready Program at one plant
Energy Policy Commitment Statement

Miami-Dade Water & Sewer Department is committed to achieving continual improvement of its energy systems, including energy efficiency, energy security, energy use and consumption by maintaining and improving an energy management system that reduces energy use, cost of energy and greenhouse gas emissions via:

- Establishing, adhering to, and reviewing performance targets and programs for energy conservation and efficiency.
- Integrating energy conservation into planning and operating decisions by informing, training and making all employees accountable for energy conservation.
- Supporting the purchase of energy efficient products and services wherever possible including the design for energy performance improvement throughout operations.
- Increasing the percentage of renewable energy in the long term.
- Energy performance indicators (EnPIs) to evaluate progress and results on a regular, periodic basis and strive for continuous improvement by implementing objectives and targets with well-developed action plans.
- Use ISO 50001 Energy Management System (EnMS) as a guide.
- Utilize a Plan-Do-Check-Act framework (Six Sigma Approach).
MD-WASD Resilience Program Mission

Operationalize the efficient use of resources and build capacity to anticipate, adapt and improve the delivery of capital projects and services in the face of natural and manmade shocks and stresses.
Why Resilience?
Water Utility Challenges

• Aging infrastructure
• Regulatory requirements
• Sea level rise (SLR)
• Limited resources
• Saltwater intrusion
• Precipitation frequency and intensity
• Natural disasters
 • Storm surge, etc.
• Cyberterrorism
• Data reliability
• Reliable electrical power
• Workforce attrition
• Population and development pressures & patterns
 • Including depopulation
Mainstreaming resiliency into planning, design, construction, operations, and policy

Qualities of a Resilient Utility

• Reliable & robust infrastructure
• Redundant energy sources
• Reduced energy costs
• Reduced carbon footprint
• Regulatory compliance
• Data-driven decision-making
• Path to continuous improvement
Increasing Infrastructure Resilience

- Vulnerability Analysis and Planning Scenarios
- Envision Rating System
- Groundwater Modeling
- Design Standards
- Renewable Energy
- Energy Efficiency
- Water Conservation
- Advanced Metering
- Capital Improvement Plan
- Integrated Technologies

CCTV, SCADA, GIS, and hydraulic modeling
Practical Outcomes with Energy Efficiency

- Cogeneration
- Plant Process Management (flow based)
- Processes
- Equipment Standards
- EnergyCAP (UBMS)
Better Plants Partner
- Joined in Dec. 2019
- Finished baseline using 2019

ISO 50001 Ready Program
- About to initiate at one WTP

Sustainable Wastewater Infrastructure of the Future (SWIFt)
- Efficient motors, pumps, LED lighting, process improvements

Cogeneration Accelerator
- As part of 8 MW build at SDWWTP

NREL Virtual In-Plant Training
- ISO 50001
- Pumps

University of Miami Industrial Assessment Center
- 2 WWTP energy audits
- Ongoing engagement and research
Chris Halpin
NV5 Energy Efficiency Services

Submit Questions
www.slido.com event code #DOE
Critical Facility Resilience and Energy Management

Energy Management Strategies

- Whole Systems Thinking
- Integrative Design Approach

Improve “energy stealth” and mitigate future energy risks

Reduce loads
Demand response
Renewables + BESS
Critical Infrastructure Hazards

Black Sky Hazard: a catastrophic event that severely disrupts critical infrastructure in multiple regions for long durations

Natural Hazards
- Wind, Floods, Ice, Heat
- Drought
- Wildfire
- Earthquake or Volcano
- Solar flare
- Pandemic

Manmade Hazards
- Human error
- Aging infrastructure
- Physical attack
- Cyber attack
- EMI attack
- EMP attack
What Is Your Design Basis Threat?

- Earthquakes - Moderate
- Earthquakes - High
- Floods
- Hurricanes
- Tornadoes
Whole Systems Thinking

“To leap forward, think backwards”

Principles of Integrative Design

Get everyone on the same page

- Begin with an integrative design workshop or “charrette”

Dual purpose

- Synergies yield many benefits from single expenditures

Efficiency first, then renewables

- First reduce the load, then size equipment to serve it
- Passive design; recover “wasted” energy; use renewables

Aim for the sweet spot

- Design to average (not peak) loads for efficient operation

See the big picture

- Optimize cost of ownership over first cost, value all benefits

Don’t cherry pick low-hanging fruit

- Portfolios of improvements yield the best payback & ROI

Give people what they want

What do we really want?
- Tons of coal?
- Megawatts of electricity?
- Or hot showers and cold beer?

Courtesy of Amory Lovins, RMI
What Programs/Funding Can I Use?

- Use cash as “seed fund” and utility incentives
- Fed: Consider EERE “Alternatively Financing”
- Non-Fed: Utilize Fed, State, NGO resources

- Energy Savings Performance Contract (ESPC)
- Utility Energy Services Contract (UESC)
- Enhanced Use Lease (EUL)
- Energy/Resilience as a Service (E/RaaS)
- Contact your USDOE Federal Project Executive

- State Energy Office, NASEO, Energy Services Coalition, CPACE
- FEMA’s Pre-Disaster Mitigation Grant Program
- USDA’s Rural Development Energy Programs
Case Study – Joint Base San Antonio

Super ESPC project financed over 22 years

- 24% reduction in electric energy use
- 900 buildings at 5 military bases
- $133.5M in energy infrastructure improvements
- $280M total cost savings

20MW PV/CHP gen. + 4MW/8MWh storage + MG control systems

Achieve energy security

“Mission Assurance through Energy Assurance”
Mark Corell - Deputy Assistant Secretary of the Air Force for Environment, Safety and Infrastructure
Case Study – Joint Base San Antonio

Significant operational, cost and resilience benefits

LIGHTING UPGRADES

- ~140,000 new LED fixtures and lamps across all JBSA locations
 - Significantly reduce cooling load
 - Increase light quality comfort & productivity

ONSITE RENEWABLE ENERGY GENERATION

- ~20MW solar arrays + 4MW/8MWh BESS
- Enhanced energy security, resilience and mission assurance
 - Shaded parking for commuter comfort
 - Environmental stewardship

CONTROLS

- New open protocol controls systems, motors, VFDs
 - Elimination of obsolete, expensive to maintain systems
 - Improved HVAC performance, scheduling
 - Reduced unscheduled downtime
 - Increased electrical load efficiency

THERMAL STORAGE

- Five new storage tanks at two locations
 - Permanent electrical peak load reductions
 - Mission Critical back-up and fire protection reservoir
 - Additional CHW capacity for site growth
Contact Information

Chris Halpin, PE, CEM, CMVP, LEED AP, DOE PF
Vice President
Chris.Halpin@nv5.com
860-328-0535

THANK YOU FOR YOUR TIME TODAY...
Q & A

Submit Questions
www.slido.com event code #DOE
Additional Resources

- **Data Centers Accelerator Toolkit**
 https://betterbuildingssolutioncenter.energy.gov/data-center-toolkit

- **Smart labs Accelerator Toolkit**
 https://betterbuildingssolutioncenter.energy.gov/smart-labs-accelerator-toolkit

- **Wastewater Energy Management Toolkit**
 https://betterbuildingssolutioncenter.energy.gov/wastewater-energy-management-toolkit
More than 3,000 solutions are available publicly in the Better Buildings Solution Center

Showcase Projects:
- Large and small buildings
- All sectors
- Specific building types such as schools, hospitals, hotels, grocery stores, universities, civic centers, libraries, offices and labs

Implementation Models (Playbooks):
- Overcome barriers: finance, data, energy management, staff training, community and customer outreach, partnering with utilities, and more
- Multi-faceted and applicable across sectors

Additional Resources, Toolkits, Case Studies
<table>
<thead>
<tr>
<th>Event</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrifying Our Buildings: Challenges and Solutions</td>
<td>June 8</td>
</tr>
<tr>
<td>Becoming ESPC-Ready</td>
<td>June 15</td>
</tr>
<tr>
<td>Boosting Industrial and Manufacturing Efficiency and Resiliency with CHP</td>
<td>June 17</td>
</tr>
<tr>
<td>Financing in Higher Education</td>
<td>June 22</td>
</tr>
<tr>
<td>What's Hot with Heat Pumps</td>
<td>June 29</td>
</tr>
<tr>
<td>Kick the Tires: Understanding the Role of R&D in the Deployment of Building Energy Technologies</td>
<td>July 6</td>
</tr>
<tr>
<td>ESPC in the Express Lane: New Project Tracking Tools</td>
<td>July 13</td>
</tr>
<tr>
<td>Workplace Evolution: Supporting Occupant Health while Achieving Energy Efficiency</td>
<td>July 20</td>
</tr>
<tr>
<td>Energy-Saving Envelope Success Stories</td>
<td>July 27</td>
</tr>
<tr>
<td>Waste Reduction: Lessons Learned and What Comes Next</td>
<td>August 3</td>
</tr>
<tr>
<td>Visualize Your Energy Future with 'Slope': The State and Local Planning for Energy Platform</td>
<td>August 10</td>
</tr>
</tbody>
</table>
Additional Questions?

Please Contact Us

Follow us on Twitter @BetterBldgsDOE

Better Buildings Solution Center https://betterbuildingssolutioncenter.energy.gov/

General Inquiries BetterBuildings@retechadvisors.com

Program Support ksanderson@retechadvisors.com

Jim Henry
Iron Mountain Data Centers
James.henry@ironmountain.com

Jason Grant
Miami-Dade County Water & Sewer Department
Jason.grant@miamidade.gov

Chris Halpin
NV5 Energy Efficiency Services
Chris.Halpin@nv5.com

Shannon Zaret
Department of Energy
Shannon.Zaret@ee.doe.gov