Low Carbon Technology Strategies **SMALL HOTEL** Driving our nation's buildings to low and zero carbon saves money, creates jobs, and leads to a healthier environment and more resilient economy. The table below includes steps that building owners and operators can implement to achieve smart, healthy, and low-carbon small hotels within their existing building portfolios. Small hotels are typically four floors or less and less than 50,000 square feet and often use packaged rooftop units for heating, cooling, and ventilation. Assess current conditions in your building against the simple, intermediate, and advanced options to begin planning your next steps to reduce carbon emissions. If you have a commercial kitchen, include low carbon strategies for kitchens (equipment, ventilation, refrigeration, and water heating). | Technology | | Simple | Intermediate | Advanced | |---|---|--|--|---| | Lighting | Interior
Lighting | Common Areas: Install Type B tubular LEDs that meet DesignLights Consortium (DLC) technical requirements Reduce overlit spaces Install occupancy sensors or vacancy sensors Guest rooms: Install ENERGY STAR® certified light bulbs or replace with an LED fixture | Common Areas: Install dimmable LED retrofit kit or replace with LED fixture that meets DLC requirements Install daylighting controls and occupancy / vacancy sensors Integrate with building automation system (BAS) if possible | Common Areas: Install retrofit kit or new luminaire with luminaire level lighting controls Include integrated daylight and occupancy sensor networked lighting controls that meet DLC requirements, load shed via Auto-DR interface, and integrate with BAS | | | Specialty
Lighting | Retrofit track heads and
decorative fixtures with ENERGY
STAR-certified light bulb | Replace existing fixtures or
trackhead with LED fixtures or
track head | | | | Exterior and
Parking Lot
Lighting | Install LED screw base replacement for HID lamps that meets DLC requirements Install photocell to control lighting | Replace with area luminaires that
meet DLC requirements Install time clock and reduce
lighting at night | Redesign using the <u>Better</u> Buildings Parking Lot specification and include videobased occupancy sensors | | Space
Conditioning
and Water
Heating | HVAC | Verify and repair dampers Test and seal ducts Install advanced RTU controls retrofit (variable speed supply fan, integrated air-side economizer, and RTU-level demand-controlled ventilation (DCV)) | Replace equipment with right-
sized, high-efficiency equipment
(CEE Advanced Tier) Install air source heat pump
RTUs, dual fuel RTUs, or variable
refrigerant flow (VRF) systems Add energy recovery ventilators Install active thermal
energy storage for load shifting
and system optimization Add evaporative cooling in dry
climate zones | Install water source or ground source heat pumps Switch to radiant or chilled beam systems with a dedicated outdoor air system (DOAS) for ventilation Implement natural ventilation, controlled in coordination with mechanical ventilation | | | Water
Heating | Reduce water heating demand through various technologies like low-flow faucets and showerheads Lower hot water supply temperature setpoint (to 130F) | Install point-of-use electric water heaters for small, distributed loads Install high-efficiency, connected heat pump water heaters Retrofit central water heating plant and distribution system (e.g., pipe insulation, controls, efficient pump) | • Install CO ₂ heat pumps to eliminate HFC refrigerants | | Controls and
Analytics | Install or
Upgrade
Controls | Widen zone temperature
control deadband Install wireless networked
thermostats to centrally manage
heating/cooling set points,
setbacks, and schedules | Add controls to support holiday
scheduling, optimal start, and
additional monitoring points Reduce airflow to zones during
unoccupied times with
zone-level DCV | Reduce airflow to zones during
unoccupied times by integrating
occupancy sensors from the
lighting control system into the
HVAC control system | | Technology | | Simple | Intermediate | Advanced | |--------------------------------------|--|---|--|---| | Controls and
Analytics
(cont.) | Install or
Upgrade
Controls
(cont.) | Implement building Re-tuning™ process Automatically shut off equipment (exhaust fans, room air cleaners, other loads) during unoccupied times | Implement demand limiting
RTU controls and continuous
demand management | Implement controls that integrate
building loads, thermal/battery
storage, on-site co-generation
plants, PV, and EV charging to
provide demand flexibility
(Market Brief) | | | Install Energy
Management
and
Information
System (EMIS)
(EMIS Primer,
Specification) | Install energy information system
(EIS) with whole building
interval meters Submeter critical loads to
verify operation Compare whole building EUI among
portfolio or against similar buildings | Subscribe to remote monitoring
and diagnostic service for HVAC | Install an EMIS as an integrated platform for monitoring and control of lighting and HVAC systems Utilize EMIS as an integrated platform for monitoring and control to provide demand flexibility (Market Brief) | | Building
Envelope | Opaque
Building
Envelope | Use reflective roof materials Use cool roof coating, climate dependent Identify thermal bridges with IR camera and mitigate (complexity varies) Add loose fill insulation in attic space Deploy radiant barrier or spray applied low-E paints/coatings in attic spaces (where applicable) | Add or increase level of continuous insulation when replacing roof membrane Add attic ventilation, hot climate Install phase change material (PCM) panels in dropped ceiling (multiple technologies available) | Add continuous insulation to
exterior walls Use advanced techniques to fill
gaps with spray foam | | | Building
Airtightness | Compartmentalize guest rooms: Seal obvious cracks Install weather stripping Seal around receptacles Apply window flashing to prevent moisture penetration | Conduct blower door test along with smoke test to locate and seal where needed Caulk and seal above dropped ceiling | Install air barrier (preferably
combined with other retrofit
measures, such as adding exterior
or interior insulation) | | | Windows and
Attachments | Install applied films Automate interior attachments Caulk/seal windows Install window shading or attachments | Add storm window/secondary_glazing or replace existing windows with double-pane or Low-E Automate existing exterior attachments Add automated exterior attachments/awnings | Install dynamic windowsInstall thin triple windowsInstall vacuum glazing | | Plug and
Process
Loads (PPLs) | | Procure ENERGY STAR rated or better products Enable low-power or sleep settings Consolidate and reduce loads Add insulation to dryers Program washers/dryers to use the shortest cycle and lowest water/air temperature needed to sufficiently clean/dry the laundry Procure and install PPL control technologies: Advanced Power Strips Wireless Meter and Control Systems (aka Smart Outlets) Automatic Receptacle Controls | Integrate smart PPL controls
with other building systems, such
as lighting Load shift by implementing
advanced scheduling technologies
for charging EVs | Integrate PPL controls to shed, shift, and modulate during times of peak fossil generation Implement power over ethernet (PoE) systems Integrate PPLs into demand response | | Renewables
and Battery
Storage | | Participate in a community solar
program or access renewables via a
power purchase agreement (PPA) | Purchase on-site PV to cover roof
area (verify roof structure and age)
and parking as needed Integrate electric batteries and
additional thermal energy storage
to balance PV production | Integrate renewables, battery
storage, and building loads into
demand flexibility controls (EMIS
platforms often provide this
integrated-control capability) | **Need additional support?** See the <u>Path to Zero: Getting Started Guide</u>. Reach out to <u>Better Buildings</u> for support on your path to low carbon.