Enterprise-Wide Deployment of Chilled Water Optimization
2019 Better Project

Nissan North America
July 2019
Executive Summary

- Background
 - 3 manufacturing sites with more than 14 million square feet of conditioned space
 - Learned about chilled water optimization through Better Plants and ENERGY STAR partners
 - Realized energy savings from the chilled water optimization system in the Canton Vehicle Assembly Plant

- Implementation and Execution
 - Installed new controllers
 - Replaced valves and actuators
 - Developed new user interface

- Outcomes
 - Energy Savings
 - 2,966 MWh of electric energy savings in 2018
 - Sustained Impact
 - Evaluating chilled water optimization throughout facilities
 - Evaluating optimization options of other facility systems (e.g. hot water systems, air handlers, etc.)
Background

- 3 Manufacturing Sites
 - Located in southeastern United States
 - Hot and humid during cooling season
 - > 14 million square feet of conditioned space
 - Electric load increases immensely for cooling and dehumidification

- Benchmarking and Canton Optimization Pilot Program
 - First learned of chilled water optimization during benchmarking with Better Plants and ENERGY STAR partners
 - Studied and implemented a pilot program at the Canton Vehicle Assembly Plant
 - Realized success of the Canton chilled water optimization and began studying feasibility of chilled water systems in Decherd and Smyrna

- Results of Initial Studies
 - Found the need to automate the chilled water systems
 - Actuating valves, variable speed drives, electric controls
 - Determined that a new user interface (UI) needed to be developed to monitor the system
 - Began implementation process in 2016
Smyrna Fascia and Decherd Chilled Water Optimization

- **Smyrna Fascia**
 - 2,400 tons of refrigeration
 - Previously operated manually through remote HMI
 - Converted to a variable flow system from a primary-secondary pumping system
 - Determined that the secondary pumps could handle the required flow through the chillers and the chilled water loop

- **Decherd**
 - 3,800 tons of refrigeration
 - Previously operated manually through remote HMI

- **Control System**
 - Uses manufacturer data to determine chiller load sharing based on condenser water temperature and chilled water load
 - Coordinates cooling towers and pumps to drive condenser water temperature to allow the most efficient operation at the given chilled water load
 - Controls chilled water pumps to maintain a set differential pressure between the supply and return
Smyrna Central Utilities Plant Condenser Water Optimization

- 17,000 tons of cooling capacity
- Manually controlled through a remote HMI
- Tied to both the compressed air system and the chilled water system
 - Needed to ensure that condenser water temperature was not driven too low in order to maintain compressor oil temperature

Controls
- Coordinates cooling towers and condenser water pumps to drive the condenser water sump temperature to allow for the most efficient operation of the chillers at the given chilled water load
- Added a schedule to the existing remote HMI that allowed for automatic staging of chillers instead of manually staging
- Included a minimum condenser water sump temperature to avoid adversely impact the air compressors
User Interface

- Focused on UI after completing controls design
- Graphics includes pumps, valve, chillers, cooling towers, and expansion tanks (where applicable)
- Primary KPI is kW/Ton
Trending Data

- Multiple equipment and system trend points including motor speeds, percentage of full-load amps, efficiencies, power, loads, and energy consumption
- Calculates an “Old kW” based on the Operator’s sequence of operations and equipment specifications
Challenges Faced

- **Old Equipment**
 - Valves with deteriorated seats
 - Replaced as they were found
 - Pneumatic actuators
 - Replaced with electric actuators
 - Outdated controls

- **“Old Habits”**
 - Manually operating an automated system
 - Taking the system out of automatic control and controlling using the remote HMI
 - Setting VFDs in hand and increasing pump speeds
 - Increasing pump speeds when supply pressure is too low
 - Turning on chillers locally
Outcomes and Sustained Impact

Outcomes

- **Energy Savings**
 - 2,966 MWh in 2018
 - 3,661 MWh since start of operation at Smyrna Fascia

- Large step toward carbon footprint reduction efforts
 - Nissan Green Program 2022

- Increased direct and indirect efficiencies
 - Frees operators from constantly monitoring systems

Sustained Impact

- Studying possible applications for other chilled water systems

- Studying and implementing projects to automate and optimize other systems such as air handlers, hot water systems, etc.

- Using the extensive data collected to justify the replacement of aged equipment
Questions?

Thank you