Water Efficiency in the Automotive Sector

Steve Pierett, C.E.M., CP EnMS, C.R.M.
Environmental Manager

Volvo Group North America, LLC
New River Valley Plant, Dublin, VA

Area’s Largest Manufacturing Facility
Largest Mfg. Facility in Volvo Family
OVERVIEW

- Examine a decade plus of water savings benefits
- Review two projects
- Review water savings versus energy savings
Overall, water use efficiency improved 41% since the baseline year of 2003.
Cab Leak Test Water Recycling

- Baseline water use for cab leak testing - 1100 gallons per truck
- System installed to clean and recycle the water used for cab leak testing.
- Investment was $520,000
- The benefit of recycling this water for reuse
 - Water use savings of 700 gallons per truck
- This represented a plant-wide reduction for water use of 22%
Process Wastewater Treatment Method

The reuse system consists of the following components:

- **Un-treated Wastewater**
- **Waste Water Storage**
- **To Plant Processes**
- **WWT**
- **UF Feed Storage**
- **Cartridge Filter**
- **Ultra-Filtration**
- **Reuse Water Storage**
- **High Pressure Reverse Osmosis**
- **HPRO Feed Storage**
- **UV Light**
- **Reused Water**
Process Wastewater Reuse Drivers

Environmental Issues

- Surfactant issues at the regional authority / foaming
- Molybdenum contamination of land-applied sludge
- Volvo was proactive to identify its contribution to a potential issue

Volvo Environmental Requirements

- Wanted Position: To install water recycling processes with low water usage and preferably with chemical recycling in closed loop processes
Process Wastewater Reuse Incentives

Environmental Sustainability

- Average incoming water from processes = 12M gal
- Average reuse water to processes = 7.4M gal
- Average annual reuse rate is 62% for process water

Environmental Liability / Risk Mgmt.

- Capital funds invested for recycling water instead of meeting increasingly stringent environmental regulations. $1.5 MUSD vs 1.1 MUSD
Process WWTP Specifications

1. Average daily flow from WWTP
 - 36,307 gallons per day
2. Maximum treated flow (WWT) = 500 gpm
3. Storage capacity of untreated wastewater
 - 274,000 Gallons
4. Conventional precipitation system.
 Treats Nickel and Zinc (0.099 mg/L limit for Ni and 0.6 mg/l limit for Zn)
Usage Points With a Focus on Process Opportunities

- E-coat high-purity water (HPW) system required replacement
 - Ran 3-4 months of water testing to baseline system to verify performance before incorporating process needs
 - Advantage:
 - Avoid additional capital expense and incorporated e-coat into reuse system instead
 - Disadvantages:
 - Drives reuse water requirement to lower conductivity
 - More frequent discharge events due to more stringent water quality requirements
Usage Points

- **PROCESS**
 - E-coat System: 15,000 to 20,000 gpd

- **NON-PROCESS**
 - Humidification: 500 to 1,000 gpd
 - Parts Wash: 12,000 gpd
 - Cooling Tower: 4,000 to 6,000 gpd
System Upgrade in 2015

- UltraFilter and High Pressure Reverse Osmosis replaced NF/RO
 - When NF permeate conductivity > 2000 µohms/cm, the RO permeate conductivity will exceed 30 µohms for processes.
 - Resulting in a discharge event
 - Install UF and HPRO operating at 800 – 1000 psi allowing treatment of conductivities of 45,000 µohms/cm
 - Upstream of WWTP, reduce solids content of wastewater to minimize impact and loading on UF and HPRO
 - Install filter system to remove E-coat solids and other solids
- Improve Water Balance between production and non-production periods
 - Added two 17,000 gallon tanks to store clean water for reuse
Process Wastewater Treatment Method

The reuse system consists of the following components:

- Untreated Wastewater
- Waste Water Storage
- UF Feed Storage
- Cartridge Filter
- Ultra-Filtration
- High Pressure Reverse Osmosis
- Reuse Water Storage
- UV Light
- HPRO Feed Storage
- To Plant Processes
Design Specifications and Installation

Ultraviolet Light (254nm) Cartridge Filtration
Design Specifications and Installation

Ultra-Filtration

High Pressure RO
Process Improvement - 2015

- Installed solids removal equipment for E-coat discharge to reduce impact of process on conductivity/TDS & TSS.
Process Improvement - 2015

- Expand the storage capacity for reuse water to address losses associated with shutdown periods by addition of two 17,000 gallon pure water storage tanks.
Process Improvement - 2015

- High pressure RO system will address lower conductivity requirement for E-coat, but allow improved system reuse (provide up to 93% recovery of process water)
 - Operating at membrane pressures from 800 to 1,000 psi will allow for treatment of waters with conductivities approaching 45,000 μohms/cm.
Reference: EPRI- 2013 - Electricity Use and Management in the Municipal Water Supply and Wastewater Industries

- Public Water Supply Average w/o CEC data = 1,903 kWh/MG
 - Community Surface Source = 1,600 kWh/MG
 - Community Groundwater Source = 2,100 kWh/MG

- Municipal Wastewater/Secondary Treatment = 2,080 kWh/MG
 - Greater than Secondary Treatment = 2,690 kWh/MG

- For this analysis:
 \[1,903 + 2,080 = 3,983 \text{ kWh/MG or } 3.983 \text{ kWh/1000 gallons} \]
Impact of Reduction in Water Use

- Plant-wide Baseline Water Use is 62M gal
- Water Use Average from 2004 to Present is 39M gal
- Average Annual Reduction in Water Use is 23M gal
- Plant-wide Average Cost Savings is $216,230 per yr

WWTP reuse system savings in 2015 is ~$69,000
Increased Energy Use for WWTP reuse system is 136,320 KWH on average or $18,135/year
WWTP reuse system net cost savings is ~$51,000 in 2015
Nominal Benefit to the County

- County Energy Savings Based on plant water savings
 - 926 KWH per Year average
- At 7.5 cents/KWH, Average County Cost Avoidance
 - $69.46 per year
- Overall, nominal energy savings or cost benefit for the County
Overall Benefits for Wastewater Recycling and Reuse

- Additional energy cost to operate reuse systems is outweighed ~ 4:1 by the savings from reduced water use at county rates
- Improved feed water quality and water balance for processes
- Reduced chemical usage for non-process requirements
- Partial Fulfillment of the Volvo Environmental Goal
- Reduced environmental liability and risk with fewer discharges to POTW
Thank You
Steve Pierett, C.E.M., CP EnMS, C.R.M.
Environmental Manager
Volvo Group North America, LLC
540-674-7730
stephen.pierett@volvo.com

Brian Kidd, Principal
ProChem, Inc.
540-268-9884
bkidd@prochemwater.com