Who we are

- A global specialty chemical company headquartered in Kingsport, Tennessee
- Approximately 14,000 employees and 50 manufacturing sites around the globe
- Serving customers in more than 100 countries
- A company dedicated to environmental stewardship, social responsibility and economic growth
- A Responsible Care® company for more than 25 years
- 2017 ENERGY STAR® Partner of the Year Sustained Excellence
- 2016 revenue of $9 billion
Self sufficiency mindset

- CHP since the 1920's
- Incineration complex
- Hazardous and non-hazardous landfills
- Wastewater treatment
Eastman’s first encounter with CHP
Kingsport, Tennessee plant

- Eastman Chemical Company’s Tennessee Operations (TNO) is one of the largest chemical manufacturing sites in North America, covering approximately 900 acres.
- This facility produces a variety of chemicals, fibers, and plastics and also serves as the worldwide headquarters for Eastman Chemical Company.
- The facility began operating its first CHP system in 1920’s and has continued adding to the system until its most recent expansion in 1993.
- TNO’s experience with CHP predates the construction of a reliable electric grid in the Kingsport area.
- When it first came online, the CHP system was the only reliable source of electricity for the facility.
Benefits of Combined Heat and Power (CHP)

- Dramatically improves Eastman’s footprint: ~70% energy captured versus ~40%
- ~90% of the electricity at Eastman comes from CHP technology
- CHP has broad support from environmental groups and the Department of Energy
Steam and electricity generation at TNO

- One of the most energy efficient plants in the country
- TNO received ENERGY STAR® Combined Heat and Power (CHP) Award
 (requirement: use at least 10 percent less fuel than state-of-the-art separate heat and power generation)
- Steam generation
 - 17 boilers
 - Typical steam load: 3.6 million lb/hour
 - Similar to 700 MW power station
- Electricity generation and distribution
 - Generate 90% of plant’s electricity needs
 - Electrical nameplate capacity = 190 MW (enough for a city of ~170,000 homes)
 - 19 turbine-generators
 - ~200 substations
CHP at Eastman today

- **Benefits of CHP at the TNO site:**
 - CHP total efficiency: >70%
 - Avoided CO₂ emissions: 358,000 tons/yr
 - Yearly savings: $~45M
 - Reduced demands on existing transmission and distribution infrastructure

- **Two other Eastman sites currently make use of CHP**
 - Longview, Texas
 - Two GE 7241(FA) combustion turbines
 - Two heat recovery steam generators (HRSG)
 - One GE condensing/extraction steam turbine-generator
 - Indian Orchard, MA
 - Generates ~4 MW as steam pressure is reduced from 650 to 125 psig for process use

- 87% of Eastman’s worldwide production occurs at sites with co-generation
- Enables a source energy reduction of several trillion Btu’s each year
Improving CHP efficiency at the Kingsport site
TNO cogeneration system evaluation

- Energy is a significant cost to Eastman
- In today’s environment, we need to make operations as efficient as possible, including energy efficiency improvements
- A detailed internal study of the system took place in 2016
- Involved Technology, Utilities, and Worldwide Energy Program personnel
- Led to significant learnings

Goal

Determine the proper strategy to maximize profits by improving system efficiency
TNO cogeneration imbalances

- Over time, various changes have led to periods of time when the steam electric system at TNO is unbalanced.
- Although the overall efficiency is very high, this imbalance does reduce the ability to operate the power plant as efficiently as possible with current equipment.
- Primary factors include:
 - Shift towards specialty chemical company has changed energy demand profile
 - Move to public company and automation increased HVAC load
 - Improved efficiency has reduced thermal steam demand in processes (which reduces electricity cogeneration)
 - Sub-optimization of the use of mechanical drives throughout the plant
 - Ambient temperature reduces thermal steam demand in warmer months
Path forward after evaluation

- Ensure users are valuing utility cost savings appropriately
- Identify and implement attractive capital projects to bring the system into balance
- Educate manufacturing, technology, and engineering on findings and promote involvement
- Form the Utilities System Balance Team to review projects and oversee the health of the system
- Determine if it is viable to add external customers of 15 & 100 psig steam
Path forward after evaluation

Ensure users are valuing utility cost savings appropriately

Identify and implement attractive capital projects to bring the system into balance

Educate manufacturing, technology, and engineering on findings and promote involvement

Form the Utilities System Balance Team to review projects and oversee the health of the system

Determine if it is viable to add external customers of 15 & 100 psig steam

Focus of DOE Steam System In-Plant Training
DOE Steam System In-Plant Training

- Held in June, 2016
- Led by Dr. Greg Harrell
- Focused on identifying options to improve the steam/electric balance at the Kingsport site
- Several potential projects were identified and are now in various stages of implementation:
 - Absorption chiller operation strategy
 - Backpressure turbine loading strategy
 - Fan drive turbine → motor replacement
Future improvement strategy

- Some modes of operation are less efficient.
- In most cases, these inefficiencies occur due to constraints in our very complex system.
- Power Department operations continuously monitors plant needs for steam and electricity and attempts to optimize the system within constraints.
- The newly formed **Steam Electric Balance Team** will monitor the system and recommend equipment / operational changes to improve system efficiency.
- Over time, these actions are expected to remove current operating constraints for Power Department and effectively eliminate time spent in inefficient operating modes.

Steam Demand Electric Demand
Summary

- CHP systems may not be the lowest upfront capital cost approach to supply energy, but they are clear winners when evaluated on a life cycle cost basis.
- Over time, the users and configuration of a CHP system may change in a way that impacts overall efficiency.
- Operating a CHP system at optimal efficiency requires continual focus to ensure users are not sub-optimizing.
- The Department of Energy provides valuable resources to Partners including software, training, and technical support.
A truly sustainable company is one that creates significantly more value in the world than the resources it uses.

David Golden, senior vice president, chief legal & sustainability officer, and corporate secretary