Novel Heat Generation for Power and Process Systems

Dr. Vi Rapp
Dr. Peter Therkelsen

vhrapp@lbl.gov
April 2019
Better Plants - Technology Days
Reacting flow research at Berkeley Lab

- Burner technologies for next-generation advanced thermal systems
 - Thermal output for 5kW to 200 MW systems
 - Fuel-flexible, high turndown, ultra-low NOₓ
 - Stable, scalable lean premixed flames
 - Customizable flame pattern to maximize efficiency

- Optimizing thermal systems for gas turbines and industrial applications
 - Combined heat and power
 - High efficiency combined cycle systems
 - Boilers and residential appliances

- Fundamental research of thermal systems and alternative fuels
 - Experimental analysis of flame flow field and turbulence interactions
 - Low-volume, alternative fuel characterization coupled with machine learning
Berkeley Lab’s burner technologies for power and process systems

• Ring Burner
 – Lean, premixed, ultra low NO\textsubscript{X}
 – Tested heat output from 4kW to 12 kW
 – Flame pattern can be customized

• Low-swirl Burner
 – Fuel flexible and high turndown (tested up to 50:1)
 – Lean, premixed, ultra low NO\textsubscript{X}
 – Simple and scalable design
 – Lifted flame prevents material thermal degradation
 – Tested thermal output from 5kW to 20 MW
LBNL’s Low-Swirl Burner for Honeywell’s Maxon Corp. Heating systems

“Achieved industry best emissions without sacrificing cost or performance”

M-PAKT burners (0.5 – 3.5 MMBtu/hr)
• Fuel flexible with natural gas, propane and butane
• Hundred of units installed
• First unit operating continuously since 2002
• Improved product quality

OPTIMA SLS burners (12 – 90 MMBtu/hr)
• Gas/liquid dual-fuel
• Units installed & in production

Development supported by DOE-EERE
Cost-Effective, Ultra-Low Emissions Industrial Boiler System with Real-time Response to Fuel Stock Variability

Demonstrated system capable of real time biogas/natural gas/propane fuel switching

- Combined LBNL’s low-swirl burner technology and UC Irvine fuel sensor technology (2MBTU thermal)
- Integrated system into a boiler at the Chiquita Water Reclamation Plant

Development supported by California Energy Commission

April 2019
LBNL’s Low-Swirl Injector for Solar Turbine’s 7.7 MW Taurus 70 Engine

- Developed “drop-in” injector retrofit
 - Built from existing parts
 - No special requirements for materials and control
- Met Performance Goals
 - Exceptional engine performance
 - < 5 ppm NO\textsubscript{x} (@ 15% O\textsubscript{2})
 - Durable for at least 8000 hours
 - Cost effective
- Featured article in Gas Turbine World
- 2007 R&D100 award winner

Development supported by DOE-EERE
Low Swirl Injector for Integrated Gasification Combined Cycle (IGCC) Plant with Carbon Capture and Storage

- Developed a cost-effective, fuel-flexible technology for IGCC Power plants
 - Burns coal-derived syngas, high hydrogen, and natural gas
 - Ultra low-NO\textsubscript{X} (< 10 ppm)

- Pilot scale prototype demonstrated stable operation

Georgia Tech Collaboration

20 m/s
40 m/s
60 m/s

99% H\textsubscript{2}
99% H\textsubscript{2}
99% H\textsubscript{2}

NETL Collaboration

Development supported by NETL

April 2019
Combustor for residential CHP microturbine generator

• Developed low-emission combustor for novel microturbine generator
 – Smallest low-swirl burner developed and tested
 – Combined LBNL’s low-swirl burner technology with Scaled Power microturbine generator

• Met emission and performance targets

Development supported by ARPA-e in collaboration with Scaled Power Inc.
Combustor and heater head for Stirling Engine

- Designed and developed burner head and combustor
 - Optimized burner and flame shape to provide isothermal heat transfer
 - Heater head designed to minimize pressure drop and maximum recuperation
 - Design maximizes efficiency while maintaining low emissions

- Final design met performance targets

Development supported by ARPA-e in collaboration with multiple Stirling engine companies
Increasing Turndown for tankless water heaters

- Developed technology for supplying hot water at very low flows (e.g. hand washing)
 - Increase turndown, enabling greater load following, while meeting current performance and emissions targets
 - Achieved turndown of ~50:1 (5 times higher turndown than current designs)
 - Single burner with no staging or multiple port design
- Meets ultra low NO\textsubscript{X} emissions (SCAQMD Rule 1146.2)

Development supported by NYSERDA
Efficient, low-NO$_x$ burner residential gas appliances

- Developed cost-effective burner for residential appliances
 - Efficient, low emissions burner for cooktop application
 - Met emission cooktop targets (NO$_x$ < 15 ppm)

- Developing burners for additional residential appliances
 - Target NO$_x$ < 10 ppm

Development supported by California Energy Commission and CRADA with Industry Partners
Thanks to all our sponsors and collaborators
Questions? Learn and see more on the tour

Team

Vi Rapp
Peter Therkelsen
Robert Cheng
Gary Hubbard
Josh MaKieve
Thibaud Calvet

Technologies