Making the Case for Metering and Performance Measurement in Data Centers

2016 Better Buildings Summit
Wednesday, May 11, 9:45-11:00AM
Speakers

- **Moderator**
 - Steve Greenberg – Lawrence Berkeley National Laboratory

- **Presenter/Panelists**
 - Steve Greenberg – Lawrence Berkeley National Laboratory
 - Steve Naumann – U.S. Social Security Administration
Technical Assistance for Better Buildings Partners

Steve Greenberg, Lawrence Berkeley National Laboratory
Outline

- Inspiration for metering and measurement
- Metering Guide
- Examples of Technical Assistance for Partners
- A word about Data Center Infrastructure Management
Inspiration for Metering and Measurement

- “You can’t manage what you don’t measure”

- It’s a requirement for Federal agencies per Executive Order 13693
Executive Order 13693 Mandates

- Install and monitor advanced energy meters in all data centers by FY ‘18 --Section 3(a)(ii)(B)

- Target 1.2 to 1.4 PUE for new data centers --Section 3(a)(ii)(C)

- Target less than 1.5 PUE for existing data centers (same)
Metering Guide

- Metering Steps
 - Plan
 - Implement
 - Use

- Addressing Challenges

Data Center Types: 1. Stand-alone

Data Center Site

- Building Switch Gear
- Data Center Cooling

Data Center Rooms

- UPS or Distribution Panel
- M2
- PDU
- IT Equipment

PUE = \frac{M1}{M2}
Data Center Types: 2. Embedded, w/additional metering beyond UPS output

2a. Chiller Plant input (M3)

\[\text{PUE} = \frac{(\text{M2}/.9) + \text{E}_{\text{fan}}) \times (1 + (0.285 \times \text{Eff}))}{\text{M2}} \]

Where \(\text{E}_{\text{fan}} \) = CRAH fan energy use
Eff = average chiller plant efficiency in kW/ton (M3 is used to calculate; see “Data Center Metering and Resource Guide”)
Data Center Types: 3. Embedded, no additional metering beyond UPS output

3a. Water-cooled chiller plant with CRAHs

\[
PUE = \frac{((M2/0.9) + E_{fan}) \times (1 + (0.285 \times \text{Eff}))}{M2}
\]

Eff = (Chiller efficiency + 0.2) kW/ton, where chiller efficiency can be obtained from Chiller Efficiency Table and 0.2 represents typical additional load of chilled water/condenser water pumps and cooling tower fans.
Technical Assistance for Partners

- Help with baseline PUE
- Help with opportunities for improvement
- Examples:
 - Lawrence Berkeley Lab 50B-1275
 - “Agency X”
 - Lawrence Berkeley Lab CRT
Lawrence Berkeley National Laboratory Room 50B-1275 “the case-study king”

45-year-old data center
5600 square feet
~450 kW IT load
7 CRACs 15 to 30 tons of cooling each in 2-4 stages
Down-flow units (raised floor)
Water-cooled
Other cooling including rear doors, enclosed racks, AHU
Numerous case studies
Assistance:

- Determining PUE based on existing and proposed metering
- Determining how to update metering based on changes
 - CHW plant (VFD pumps, new cooling tower)
 - In-room (chilled water to rear doors, UPS)
- Triage based on cost vs. effect on PUE
LBNL Room 50B-1275, con’t

Electric metering
LBNL Room 50B-1275, con’t

Thermal metering
Agency X

- **Technical assistance:**
 - Help with determining PUE
 - Embedded DC with shared chiller plant
 - Submetering recommendations
 - References to consultants for more-detailed assessment
 - Help with specific questions
 - Helped drop PUE from 2.3 to 1.7 with operational changes only
• Brand-new supercomputer center, embedded
• 142,000 square feet total
• 7 MW IT load to start, then up to 17, then ???
• IT load will dominate building
• 2 large AHUs for air-cooled loads
• 4 cooling towers with heat exchangers for water-cooled loads
• Water-cooled supercomputers
• Air and water side economizers
• Air-side heat recovery for heating offices
• IT loads cooled without compressors
LBNL Building 59
Technical Assistance:

• Help with determining PUE

• Help with the reviews and commissioning of meter location, accuracy, and reporting capability

• Help with identifying meter additions needed

• Triage based on cost vs. effect on PUE
Data Center Infrastructure Management

- “All things to all people”
 - IT (utilization, inventory, operational alarms)
 - Power, Space, Cooling
 - Planning

- Great for large Data Centers

- Over-commitment risk for smaller Centers
 - High cost to initiate
 - High cost (internal and external) to maintain

- Need to right-size to balance costs and benefits
Thank you! Questions?

Steve Greenberg, P.E.
Lawrence Berkeley National Laboratory
(510) 486-6971
segreenberg@lbl.gov
Building the Case for Metering

Better Buildings Summit, May 2016

Steve Naumann, Director, National Support Center

Social Security Administration
National Support Center
Urbana, MD
National Support Center Key Energy Points

- LEED Gold Certified
- Uptime Institute certified Tier 3 Data Center
- DOE Better Buildings Challenge
- Hot-Aisle-Containment of IT equipment
- High density computing & Energy Star equipment
- Electric metering down to the branch circuit
- Convergent monitoring of IT equipment: PUE, heat maps, Smart Racks
- Free cooling below 55° roughly 145 days per year...~$240k/yr
- Photovoltaic Solar Array 1.3MW ...~$152K/yr
- 6MW now, 10MW in the future
- Passive Solar heated water, rainwater reclamation, reduced flow fixtures
- Instant-on and LED lighting throughout the complex
- Southern facing floor-to-ceiling windows in the office building to help offset heating costs
- Indigenous grasses - less mowing - reduces fuel costs and air pollutants
- Solar powered parking lot lights
- Pervious parking lot and under grass grid for building maintenance access road
Photo-Voltaic Solar Array
Data Center Optimization Management

- **DCOM** Strategic areas:
 - Energy Efficiency
 - + Project Management
 - + IT, Facilities and Security Co-Management of Operations
- All add up to cost savings
Managing IT

- **High Density Computing/Hot-aisle-containment**
 - Asset Management and RFID
 - Configuration Management
 - Consolidation and Virtualization….Virtual 1st!

- **Convergent Monitoring** – using real time environmental metrics to manage IT
 - JBOC and JBOD….our goal
 - Instant PUE and trending
 - move cyclical workloads to spread the heat load evenly

- **Storage**
 - Deduplication
 - Virtualization
 - e-vault

- **Network**
 - Top-of-Rack switches
 - Virtualization
Be Green Save Green

- Do what works best for your organization
- Leverage your location...Solar, Wind, Cold
- Negotiate your energy costs
- Virtual First Policy
- Co-Location
- Cloud
- Retro-fit...cold-aisle containment
- Turn up the heat
- Challenge the status quo
Why Monitor?

- Now a mandate for Federal Departments / Agencies
- Show-back, Charge-back
- Offset operational costs / re-invest / fund new projects
- Make improvements in whitespace layout / facilities
- Categorize usage between facilities, compute, storage and network
- Trend usage, plan for future cyclical workloads / customers
- Map energy and resources consumed to application optimization
- More robust SLAs
- Helps illustrate data centers as application eco-systems
Thank you!

Let’s discuss!