GE Power – Greenville, SC
HVAC Enthalpy Controls

David Sudbeck
May 10, 2016

Imagination at work
We Are GE

We are the world’s first and only digital industrial company. 350,000 employees operating in 175 countries.
GE is transforming

Divest

Consumer	Financing
Appliances | Capital
Synchrony | Synchrony

Invest + Disrupt

Industrial	Alstom	Digital
GE Aviation | GE Power | Renewables
GE Transportation | GE Energy Mgmt | Thermal
GE Healthcare | GE Oil & Gas | Grid
Vertical Finance | GE Lighting | GE Digital

Culture + Transformation

The first Digital Industrial company
Brilliant Factory …

Var Cost
Base Cost
COQ
Inventory
Etc

Big Data → Information → Action → Savings

$ $$

GE
 Greenville Gas Turbine Manufacturing

- Factory built in 1968 (48 years old)
- 1.5MM square feet of manufacturing space
- 6000 refrigeration tons of HVAC capacity
- 3300hp compressed air capacity
- 2600 high bay fixtures
- $20MM annual utilities cost

Sensor Enabled Improvements
- Upgraded to high efficiency HVAC controls
- Installed smart utility metering
- Integrated plant wide monitoring and diagnostic network
- Reduced leaks and non-productive loads
- Developed predictive energy cost models
HVAC Enthalpy Controls

Problem: Rooftop HVAC units, ~6000 tons (72MM BTU) capacity, were past their efficient life cycle.

Should we replace or upgrade?
Proof of Concept on Two Units

Smart power meters installed on two 60 ton HVAC units on manufacturing roof.

Unit 1:
Upgraded the controls for enthalpy “free cooling”

Unit 2:
Maintained existing controls.

Monitored the power consumption for 6 months.

A picture is worth a thousand words…

Sometimes it’s worth a million dollars

Showed 50% reduction…projected $1 million annual savings
New Controls Implemented

HVAC status at a glance

Detailed view of mechanical, temperature and alarm state for individual units only a single click away
$960K saved in 2014, $1MM saved in 2015
~50% energy reduction from 2013
Energy Price Forecasting

Problem: Volatile day-to-day pricing has big $ impact

Can we predict and react?
Extreme weather events push short term energy costs up 5X to 10X

<table>
<thead>
<tr>
<th>Year</th>
<th>2013</th>
<th>2014 kWh</th>
<th>%change</th>
<th># change</th>
</tr>
</thead>
<tbody>
<tr>
<td>kWh Used</td>
<td>10,270,932</td>
<td>9,133,044</td>
<td>-12%</td>
<td>(1,137,888)</td>
</tr>
<tr>
<td>Cost</td>
<td>$524,516.63</td>
<td>$626,376.65</td>
<td>16%</td>
<td>$101,860.02</td>
</tr>
<tr>
<td>$/kWh</td>
<td>0.0511</td>
<td>0.0686</td>
<td>26%</td>
<td>0.0175</td>
</tr>
</tbody>
</table>

Utility provides the next days rates approximately 9 hours before they are applied.
Five Day Energy Forecast for Energy Cost Avoidance