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Executive Summary 
Circuit-level metering technologies provide the ability to monitor individual circuits within an 
electrical panel in a building, providing detailed power and energy consumption data at a much 
more granular level than was previously achievable in a cost-effective manner. While the 
fundamental hardware components of circuit-level technologies—split-core current transformers 
(CTs) and power monitoring meters—have existed for some time, new offerings in the market have 
integrated these components more compactly, lowered costs, and streamlined data organization, 
transport, and access via software solutions accessible through web and application programming 
interfaces (API). 

Building owners and operators typically face multiple challenges to access data on electrical power 
and energy consumption within a building. They may have access to whole-building electrical data 
via advanced metering infrastructure (AMI), but very rarely do they have insight into the power and 
energy consumption of individual end uses or devices. This lack of visibility into electrical data limits 
the ability to identify issues with individual pieces of equipment, quantify consumption of specific 
end uses or tenants, or present occupants with accurate data about their energy consumption as 
building users. Circuit-level metering allows for various innovative use cases, such as tenant billing, 
tenant engagement, measurement and verification (M&V), automated fault detection and 
diagnostics (FDD), identification of energy conservation measures (ECM), time-of-use management, 
and demand response.  

Major adoption of this technology has not occurred due to prohibitive cost, unreliable data 
communication, and reduced interoperability. To address these shortcomings, the U.S. Department 
of Energy (DOE) put out the Low-Cost Wireless Metering Challenge that elicited manufacturers to 
produce a cost-effective, accurate, wireless system to measure diverse electric loads within a 
building and relay the data wirelessly. In March 2017, Meazon was declared the winner of that 
competition. The National Renewable Energy Laboratory (NREL) evaluated Meazon’s circuit-level 
analytics and submetering platform (CLASP), in which one meter is required to measure each three-
phase load.  

NREL examined the metering technology in a field deployment where it was installed in 120V/208V 
and 277V/480V commercial electrical panels and circuit disconnects in the César E. Chávez 
Memorial Building in Denver, Colorado. The evaluation of the equipment under test (EUT) focused 
on three aspects: (1) accuracy of the data provided by the system, (2) ease of technology installation 
and data integration into existing U.S. General Services Administration (GSA) analytics platforms, 
and (3) total cost of ownership and cost-effectiveness of the technology. The specific performance 
criteria outlined for this demonstration, as well as success criteria and results of testing, are outlined 
in Table ES-1. The table and summary of the results (according to each objective) are presented 
next. 
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Table ES-1: Performance Objectives 

Quantitative 
Objectives 

Metrics and Data 
Requirements Success Criteria M&V Results 

Submeter 
Accuracy In-
Situ Field 
Demonstration 

• Current 
• Voltage 
• Real power 
• Power factor 
• Energy 

• Measurement accuracy of 
energy consumption (as 
cumulated over 2–4 weeks) of 
+/- 10% 

• Measurement accuracy of  
+/-10% for total power 
measurements1 

• 95% data availability over the 
course of the demonstration 

Partial: Total 
energy error was 
<2% for all Wye 
loads. Delta loads 
showed higher 
errors at low power 
factors. 

Qualitative 
Objectives  

Ease of 
Installation 
and 
Integration 
with GSA 
Information 
Technology 
(IT)/Enterprise 
Systems 

• Level of technical 
expertise required 

• Time required to install 
and configure 

• Customer labor 
associated with install 

• Data integration 
requirements 

• Security requirements 
• Ease of visualizing and 

downloading data 

• Ability to be installed in the 
majority of GSA’s electrical 
panels 

• Ability to integrate into GSA 
Link infrastructure 

• Generally applicable to >70% of 
GSA facilities 

Met: Successfully 
and efficiently 
installed in a variety 
of panels. 
Demonstrated 
integration with 
software 
components of GSA 
Link. 

Value 
Proposition 
and Cost-
Effectiveness 

• Installation and 
operations and 
maintenance (O&M) 
cost 

• Energy and cost savings 
identified 

• Value of tenant billing 
• Value of FDD 

• Potential savings exceeds 
expected installation and O&M 
costs 

• Software offers measurement 
and analytics capabilities that 
address industry needs 

• Data from software can be 
utilized to identify a significant 
portion of the faults and ECMs 
identified by the GSA Link 
software (75% or more) 

• Determine if life cycle is cost-
effective as a stand-alone 
platform 

Met: Technology 
demonstrated 
ability to identify 
relevant behavior 
(e.g., cycling, 
on/off, seasonal 
trends) and 
capability to be life 
cycle cost-effective. 
No subscription 
cost for retrieving 
data. 

 
1 Evaluation of meter accuracy during laboratory testing demonstrated that comparison to stated accuracy in product literature was not 
appropriate for field testing success criteria. Accuracy values in product literature were developed using controlled voltage/current sources and 
are not reflective of in-field operation and, therefore, should not be the success criteria for this objective. 
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i. Submeter Accuracy In-Situ Field Demonstration 
The CLASP was able to provide high-resolution and accurate power and energy consumption 
data (for most loads) that provides insights into equipment operation and supports the value 
propositions outlined in Table ES-1. Total energy error was less than 2% for all Wye 
configuration loads when they were operating. It captured accurate data for dynamic swings 
(e.g., variable air volume [VAV] equipment) and more steady behavior (e.g., panel mains). 
Figure ES-1 shows the time series data for two devices (the panel mains and a fan-powered 
VAV box with a constant volume fan) with distinct characteristics in the field demonstration. 
This figure demonstrates how well the EUT was able to track the power signal of the device 
(red trace), as compared to the revenue-grade submetering installed by NREL, denoted by 
“reference” and the green trace. The CLASP featured low average percent error (<4%) for all 
Wye loads during operation. However, the accuracy was impacted at low power factor (<50%) 
for Delta configuration loads. The vendor suggested using the latest version of the meter, 
which was not available at the planning stage. NREL has not vetted those claims. 

 
Figure ES-1: Accuracy results for two devices in the field demonstration. One day of panel 
mains data is shown in the left figure, and a whole week of a VAV device operation in the 

right. 

ii. Ease of Installation and Integration with GSA Information Technology (IT)/Enterprise 
Systems 
This technology proved easy to install by a certified electrician, who completed the install of six 
meters in two separate panels (120/208 V and 277/480 V) and two circuit disconnects (along 
with associated commissioning) at the César E. Chávez Memorial Building in six hours. The 
technology was installed in high- and low-voltage panels with limited space in the electrical 
room, demonstrating the applicability of this technology to almost all commercial buildings in 
the GSA portfolio. Primary considerations for this technology include appropriate sizing of CTs 
for each circuit, selection of loads/circuits/panels that are of high value for detailed submetering 
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(e.g., tailored for high-load devices), and GSA’s preference on data integration with its existing 
energy management infrastructure. 

Through the field evaluation, NREL and GSA demonstrated data integration from the vendor 
system into the primary software component on the GSA enterprise-level energy management 
and information system, GSA Link. Data from the CLASP was integrated into this platform to 
demonstrate the compatibility and assess the level of effort. This demonstrated the ability of 
the CLASP to augment existing energy management and information systems in buildings where 
GSA Link is deployed and provides a pathway for delivering FDD at other buildings throughout 
the GSA portfolio.  

iii. Value Proposition and Cost-Effectiveness 
This objective is challenging to assess because the metering technology may not directly 
produce cost savings, but instead enable multiple value propositions. An extensive cost-effective 
analysis of the technology was outside the scope of this project. Instead, NREL identified which 
value propositions can be accomplished by the technology and collected manufacturer 
information to estimate the total cost of ownership. The CLASP successfully identifies relevant 
behavior (e.g., cycling, on/off, seasonal trends) for ECM identification. No ECMs were identified, 
but the data accuracy and resolution were sufficient to demonstrate it is possible to detect 
ECMs and monitor potentials savings. The CLASP provides an appealing solution for tenant 
billing due to high accuracy (even though it has not been certified as revenue-grade) and 
resolution (1-min) as well as low per-point cost. The total cost of ownership was calculated for 
the pilot deployment and for a larger installation. The equipment cost to meter a single three-
phase load was estimated to be $498 and $132 for small and larger installations (>1,000 units), 
respectively. Those price points can be achieved due to zero subscription fees for retrieving data 
from the vendor’s web server. The CLASP also provides an advanced IoT platform with artificial 
intelligence technology that can resolve issues such as installation error (regarding phase 
sequence) and provide software correction. It can also combine other type of sensors in multi-
site distributed architectures. Those analytic services range from $12 to $48 per meter per year, 
depending on requested service features. NREL did not assess the effectiveness or performance 
of those services.  

The vendor supported NREL with valuable technical information needed to achieve a successful 
demonstration. Alongside this deployment, the manufacturer has also been developing new meters 
and enhancements to their platform; they believe their new DinRail Advanced meters can provide 
higher accuracy and enhanced features than the one evaluated, though that meter was not available 
at the onset of this field evaluation. NREL has included recent technology enhancements performed 
by the vendor in this report. The CLASP meter features advanced monitoring capabilities to measure 
harmonics (up to the 45th) and implements disaggregation and predictive maintenance services. 
Assessment of the new meters were outside the scope of this project. 
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I. Introduction 

A. WHAT WE STUDIED 
In March 2017, DOE recognized Meazon as the winner of the Low-Cost Wireless Metering Challenge. 
This DOE initiative’s goal was to encourage manufacturers to produce a cost-effective, accurate, 
wireless system that can measure diverse electric loads within a building and relays the data 
wirelessly. NREL was tasked with the evaluation of the vendor technology: the circuit-level analytics 
and submetering platform (CLASP). This report presents the results of the assessment of the 
hardware/software solution that provides circuit-level analytics and submetering platform for 
commercial buildings. The CLASP was deployed in a pilot installation in commercial electrical panels 
and equipment disconnects at the César E. Chávez Memorial Building in Denver, Colorado.  

Circuit-level metering is a fast-growing technology area. New products continue to be developed 
that allow building owners and operators to gain increased insight into the electrical consumption of 
their facility at significantly reduced costs compared to incumbent technology and approaches. This 
legacy technology corresponds to standard metering such as the Campbell Scientific equipment 
(WattNode2) that provides high accuracy at the expense of longer installation time, installation 
complexity, higher costs, and larger form factor. This report describes the standard technology in 
more detail in Section II.C.i. Circuit-level metering technologies typically use split-core current 
transformers (CT) to measure the current flowing through the electrical wiring. Readings from the 
CT are combined with voltage readings from the electrical panel (or user input voltage values) to 
calculate the power consumption of the devices. This data is then transmitted to a data historian 
that is hosted either locally or in the cloud. Data transport methodologies vary—methods include 
wired (e.g., ethernet) and wireless options (e.g., Wi-Fi, cellular)—and systems keep varying amounts 
of data locally on hardware or bridges as a buffering mechanism for any network interruptions in 
delivering data to the larger data historian. This data is then made accessible to the user through a 
user interface, typically a web interface. Web interfaces provide a variety of data analytics offerings, 
varying from simple data access/visualization to development of rule-based alarms and complex 
benchmarking and fault detection and diagnostics (FDD) algorithms. Many companies also support 
programmatic access to the data via an application programming interface (API). 

The CLASP, analyzed in this study, is available in single-phase and three-phase configurations. The 
system provides a highly compact data acquisition system consisting of a meter, a wireless 
communication bridge that can collect data from multiple meters, and non-proprietary CTs. Thus, 
the CLASP works with CTs from other manufacturers. The meter and the bridge communicate 
wirelessly through a Zigbee-standard industry protocol compatible with the IEEE 802.15.4 
specification. NREL evaluated the ZigBee-enabled meter with a stand-alone gateway (or bridge). 
However, the CLASP provides different system configurations that include integrated solutions for 
the meter and gateway. 

 
2 The WattNode is a kilowatt-hour (kWh) energy and power meter that measures 1, 2, or 3 phases with voltages from 120 to 600 volts VAC and 
currents from 5 to 6,000 amps. https://ctlsys.com/product/wattnode-modbus/ 

https://ctlsys.com/product/wattnode-modbus/
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To ensure good connectivity, the bridge is mounted in the vicinity of the meters where individual 
loads or circuits are to be measured. The split-core CTs are installed in the electrical panel. 

The system transmits at 1-min intervals (calculated from high-frequency sampling at the sensor level) to 
the cloud, where the data is stored and made accessible through the vendor’s web-based analytics 
platform. Other transmission rates are possible through custom configurations. The system also 
supports a RESTful API3 for programmatic data access. The hardware and software suite represents a 
streamlined set of components where the data processing, calculations, and local data storage are all 
housed in small form factor equipment and where the installation is streamlined via the limited, plug-
and-play components (Figure 1). 

 
Figure 1: CLASP diagram 

Table 1 and Table 2 show the specifications on the single-circuit system: CTs, meter, and bridge device. 
The CLASP’s meters are compatible with DIN4-Rail mounts for convenience. 

 
3 A RESTful API is an architectural style for an API that uses HTTP requests to access and use data. 
4 DIN is stands for Deutches Institut fur Normung, which in English means German Institute for Standardization. 
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Table 1: CLASP Technology Specifications 

Characteristic DIN-Rail Energy Submeters 

Description 
Wired split-core current transducers with wireless meter.  

Single-phased meter monitors one single-phase load.  
Three-phase meter monitors one three-phase load. 

Service Type Single-phase, three-phase 

Measurement Type Current (A), voltage (V), power factor, frequency (Hz), power (kW), 
reactive power (kVAR) 

Transmission 
Frequency Configurable up to 1 second (e.g., 1, 5, 15 min)  

CT Consult with Meazon for sizing and selection 

Input Power External power (from circuit) 

Table 2: Equipment and System Configurations 

Category Equipment Features 

Meter 

DinRail ULTRA 3-Ph 

(gateway required) 
ZigBee enabled 

DinRail ADVANCED NB 

(gateway not required) 

NB-IoT5 enabled 

General Packet Radio Services6 enabled 

LTE Cat-M1 enabled 

Gateway Meazon Janus Gateway 

 
5 NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area technology designed for IoT devices and services. 

6 General Packet Radio Services is a packet-based wireless communication standard designed for mobile communication. 



 CASE STUDY: LOW-COST CIRCUIT-LE VEL SUBME TERING SYSTE M 10 

B. WHY WE STUDIED IT 
Building owners and operators typically have a challenging time accessing data on electrical power 
and energy consumption. They may have access to whole-building electrical consumption data via 
AMI, but very rarely do they have insight into the power and energy consumption of individual end 
uses. This lack of visibility into electrical data limits the ability to identify issues with individual 
pieces of equipment, quantify consumption of certain end uses or tenants, and present occupants 
with accurate data about their energy consumption as building users.  

Circuit-level metering provides the ability to monitor power at each electrical circuit in the building, 
providing insight into different types of end-use consumption (e.g., plug loads; lighting loads; or 
heating, ventilating, and air conditioning [HVAC]), specific device-level consumption, or the floor- or 
panel-level consumption within a building. Circuit-level metering allows for various innovative use 
cases, such as tenant billing, tenant engagement, measurement and verification (M&V), automated 
FDD, identification of energy conservation measures (ECM), time-of-use management, and demand 
response. A listing of each value proposition and a brief description are provided in Figure 2. 

  
Figure 2: Circuit-level metering value proposition 

Metering does not save energy directly, but rather is an enabling technology that allows for more 
thorough and comprehensive energy management. The enhanced visibility of specific end-use or 
device-level energy consumption and the analytical insights provided by this technology promise to 
be more granular and scalable than data delivered by traditional submetering.  

Standard approaches to submetering in buildings have been either tailored AMI deployment or 
custom installations of circuit-level submetering. AMI is typically installed at the whole-building or 
large end-use level (e.g., chiller plant) and utilizes utility-grade, solid-state meters. Federal agencies 
and other large organizations have been increasingly installing electrical meters and associated 
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communications and data storage equipment as a part of AMI deployment in the last two decades. 
AMI installations at federal facilities typically consist of installing a revenue-grade whole-building 
interval electrical meter, gas meter, steam meter, or water meter that collects 15-min or 1-hour 
interval data. The data from the AMI meters is communicated through the local area network (LAN), 
the building automation system (BAS), radiofrequency, or wireless network communication to a 
central database. The steep cost of deploying AMI, ranging from few to several thousand dollars per 
meter (including installation), and its applicability to individual large loads do not allow for detailed 
and scalable submetering within a building. The new developments in circuit-level metering—
streamlined or integrated hardware and data hosting/analytics solutions—are driving costs down 
and warrant an investigation into the quality and cost-effectiveness of these new marketplace 
solutions.  

When evaluating the different value propositions that the circuit-level metering system offers, three 
main value propositions were identified as of interest to the U.S. General Services Administration 
(GSA): 

1. The ability of the submeter to: 

a. Interface with three-phase electrical panels in commercial facilities 

b. Accurately perform AC electrical measurements (real power (kW) and energy) 

c. Operate over specified ranges for current and voltage 

d. Meet specified time resolution capabilities 

e. Attain measurement accuracy of +/- 10% at full range (as stated by CT 
specifications) 

f. Perform long-term data logging and storage in the gateway (storing up to 15 million 
measurements) 

g. Transmit data between meter and gateway effectively with >95% uptime 

2. The ease of installation, data retrieval, and interoperability with legacy systems (e.g., GSA 
Link) 

3. The total cost of ownership of the system (including meters, gateway, and any required 
recurring costs to be able to access metered data). 

The vendor technology is at technology readiness level (TRL)7 8. The products have been tested in an 
operational environment, are at a complete design phase, and are available in the market. This 
demonstration effort verified that the final systems perform as expected in the field environment, 
assisting in completing the transition to TRL 9.  

 
7 TRLs are a method of estimating technology maturity of Critical Technology Elements. DOE defines its own TRL; please refer to 
https://www2.lbl.gov/dir/assets/docs/TRL%20guide.pdf 

https://www2.lbl.gov/dir/assets/docs/TRL%20guide.pdf
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II. Evaluation Plan 

A. EVALUATION DESIGN 
Evaluation of this technology focused on three aspects of the single-circuit submetering technology: (1) 
accuracy of the data provided by the system, (2) ease of installation of the technology and ease of data 
integration into existing GSA analytics platforms, and (3) total cost of ownership and cost-effectiveness 
of the technology. Table 3 summarizes the performance objectives for this demonstration. 

Table 3: Performance Objectives 

Quantitative 
Objectives 

Metrics and Data 
Requirements Success Criteria 

Submeter 
Accuracy In-
Situ Field 
Demonstration 

• Current 
• Voltage 
• Real power 
• Power factor 
• Energy 

• Measurement accuracy of energy consumption (as 
cumulated over 2–4 weeks) of +/- 10% 

• Measurement accuracy of  
+/-10% for total power measurements8 

• >95% data availability over the course of the 
demonstration 

Qualitative 
Objectives 

Metrics and Data 
Requirements 

Success Criteria 

Ease of 
Installation 
and 
Integration 
with GSA 
IT/Enterprise 
Systems 

• Level of technical 
expertise required 

• Time required to install 
and configure 

• Customer labor 
associated with install 

• Data integration 
requirements 

• Security requirements 
• Ease of visualizing and 

downloading data 

• Ability to be installed in the majority of GSA’s 
electrical panels 

• Ability to integrate into GSA Link infrastructure 
• Generally applicable to >70% of GSA facilities 

Total Cost of 
Ownership, 
Value 
Proposition 
and Cost-
Effectiveness 

• Installation and O&M 
cost 

• Energy and cost savings 
identified 

• Value of tenant billing 
• Value of FDD 

• Potential savings exceeds expected installation, 
O&M costs 

• Software offers measurement and analytics 
capabilities that address industry needs 

• Data from software can be utilized to identify a 
sizable portion of the faults and ECMs identified by 
the GSA Link software (75% or more) 

• Determine if life cycle is cost-effective as a stand-
alone platform 

 
8 Evaluation of meter accuracy during laboratory testing demonstrated that comparison to stated accuracy in product literature was not 
appropriate for field testing success criteria. Accuracy values in product literature were developed using controlled voltage/current sources and 
are not reflective of in-field operation and therefore should not be the success criteria for this objective. 
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i. Accuracy 
NREL assessed data accuracy in a field deployment in a GSA building in downtown Denver (see 
Section B). The CLASP was installed on circuits within electrical panels and equipment disconnects 
that captured a variety of end uses and a range of power demand magnitudes. A description of the 
site, equipment, and panel selected is presented in Section B. To quantify the accuracy of the data 
acquired by the circuit-level submetering, NREL installed high-accuracy, revenue-grade submetering 
on the same set of circuits as the metering technology under evaluation. Data were collected 
simultaneously from the CLASP and the revenue-grade metering, allowing for assessment of the 
accuracy provided by the system. 

Successful performance in the accuracy evaluation portion of this demonstration was evaluated via 
the following quantitative objective: 

Quantitative Objective 1: Submeter Accuracy In-Situ Field Demonstration and Associated Data 
Availability 

• Success criteria: 

o The technology demonstrates the ability to provide energy and power data of sufficient 
accuracy to enable tenant billing, identification of ECMs, and the quantification of 
savings due to those ECMs. Technology demonstrates purported data storage 
capabilities. Measurement accuracy is less than +/-10% for total power measurements. 

o The technology provides sufficient data availability to function effectively in a tenant 
billing system (95% data availability throughout the demonstration). 

ii. Ease of Installation/Integration 
The second goal of this demonstration was to evaluate the ease of installation of the equipment 
under test (EUT) and the ease of data integration into existing GSA analytics platforms. Ease of 
installation and ease of use are key considerations for energy submetering technologies because 
labor costs associated with installation and use may exceed the cost of the hardware. To assess this 
objective, NREL oversaw the installation process of the submetering system, documented the level 
of effort, and interviewed the GSA staff or contractors responsible for installing the product.  

Additionally, NREL worked with the GSA Link team to assess the possibility of integrating vendor 
data into the GSA enterprise energy management and information system. GSA Link is an analytics 
platform that GSA uses to evaluate the performance of its buildings, track issues, and initiate work 
orders for project execution. The ease of installation and integration was assessed via the following 
qualitative objective: 

Qualitative Objective 1: Ease of Installation and Ease of Integration with GSA Link System 

• Success criterion:  

o The ability of the technology to be installed in the majority of GSA’s applicable electrical 
panels and the ability to be integrated into GSA Link architecture. 
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iii. Total Cost of Ownership and Cost-Effectiveness 
The final evaluation criterion for this demonstration was an evaluation of the total cost of ownership 
and the cost-effectiveness of the technology. The cost calculation includes labor (e.g., installation 
and commissioning), equipment (e.g., meters, gateway, and CTs), and any recurring operation cost 
(e.g., subscription fees). Assessment of cost-effectiveness is challenging because there are no energy 
savings causally related to the acquisition of high-quality data. The data must be acted upon to 
derive savings from this technology. Additionally, the opportunities for savings may be vastly 
different between different buildings or different equipment that is measured using the metering 
technology. To provide some insight on the cost-effectiveness of this technology, we evaluated the 
amount of savings that must be delivered to offset the technology cost. 

To ensure that NREL could test this objective (at least at this specific technology demonstration site), 
NREL analyzed the type of ECMs that could be detected with the EUT. Additionally, the EUT vendor 
produces a quarterly report on issues identified by its system as well as the energy and operational 
efficiency of the building based on the sensor readings. These reports contribute to the evaluation 
of the ability of the technology to assist in driving energy savings. This portion of the assessment 
was evaluated by the following objective: 

Qualitative Objective 2: Value Proposition and Cost-Effectiveness Analysis 

• Success criteria: 

o The technology demonstrates a clear value stream that would enable cost-effective 
installation and incorporation into GSA Link. 

o The technology demonstrates a clear value stream that would enable cost-effective 
installation and use as a stand-alone platform. 

B. TESTBED SITE 
The location selected for this demonstration was the César E. Chávez Memorial Building in 
downtown Denver, Colorado. The site is a midrise office building of 10 stories with electrical risers 
and dedicated electrical rooms for each floor. It is a high-efficiency, all-electric, well-operated 
building. 
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Figure 3: César E. Chávez Memorial Building (Credit: TRYBA Architects) 

The CLASP was installed in two separate locations within the building: (1) the 7th-floor electrical 
room and (2) in the disconnects of two centrifugal chillers located in the penthouse. The revenue-
grade submetering equipment, used as the reference, was installed in two panels on the 7th floor 
and in the two chillers’ disconnects in the penthouse. The NREL reference equipment metered 120V, 
208V, and 480V HVAC equipment and panel mains. This combination of submetering allowed NREL 
to capture multiple load types in the building. 
The following site selection criteria were established as relevant for an effective evaluation of the 
circuit-level submetering technology and were used in the selection of this site: 

Required Characteristics 

o Multi-tenant building 

o The panels are 120/208 V or 277/480 V (three-phase) 

o Modern identifiable commercial three‐phase breaker panels with variable loads 

o Each circuit in the panel serves only one tenant/one end-use type 

o Panels provide sufficient space for the installation of CTs and provide space to install a 
voltage tap (e.g., via a spare breaker) 

o The electrical room provides space for temporary installation of ancillary metering 
equipment for independent M&V 

o Location of the electrical panels has good to excellent 4G wireless reception 

o The breaker panel circuits are well mapped (i.e., require no circuit tracing and have a 
current panel card) 
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Preferred Characteristics 

o One breaker panel will serve a data center 

o The breaker panel serves loads of mixed types (e.g., lighting and plug loads) 

o One breaker panel in the building is the main panel  

o The building is a small commercial building—the metered area of the building covers 
approximately 15,000 ft2. 

The demonstration site meets most of the recommended criteria, except that it is not a small 
building. Therefore, whole-building utility data was not able to be used for M&V, and one breaker 
panel was not the main panel for the building. 

C. METHODOLOGY 

QUANTITATIVE STUDY DESIGN 

To establish the accuracy of circuit-level submetering, revenue-grade submetering was installed 
alongside the EUT, and data was pulled from the two systems at the same frequency. This enabled 
comparison of power readings from the two different systems over an extended period. In this 
section, we describe the field-testing configurations as well as the circuits studied and the 
associated loads.  

i. Field Testing Design 
The circuit-level submetering technology was deployed to two separate panels (Figure 4) and two 
circuit disconnects in the César E. Chávez Memorial Building. The disconnects correspond to two 
chillers in the penthouse. Table 4 shows the type of load that was monitored for specific panels. 

 
Figure 4: Metered panels on the 7th floor 
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Table 4: Metered Equipment Specifications 

Floor Panel Voltage HVAC CT Size 
(Ref.) 

Reference 
Meter CLASP 

7th 

PPD-7 277/480 V 

Mains 400 A ✓ ✓ 

Fan-Powered 
VAV 50 A ✓ ✓ 

LD2-7 120/208 V 
A/C 785 50 A ✓ ✓ 

8th Floor Server –   ✓ 

Penthouse Equipment 
Disconnects 277/480 V 

Chiller 1 600 A ✓ ✓ 

Chiller 2 600 A ✓ ✓ 

 
For the circuit-level meter, there were two gateways on the 7th floor (one for every two meters). 
The gateway (or bridge) communicates wirelessly with the meters via an IEEE 802.15.4-based 
specification (Zigbee). The data is transmitted from the gateway to the cloud-hosted database for 
long-term data storage. The meters were logging data at 1-min intervals. 

To assess the accuracy of the readings acquired by the EUT, revenue-grade submetering was 
deployed alongside the EUT in panel PPD-7, LD2-7, and the chillers’ disconnects. For panel PPD-7, 
the revenue-grade equipment was installed to meter the panel mains and one fan-powered VAV 
box. The fan-powered systems provide each zone with variable temperature-constant flow supply 
air. For panel LD2-7, the revenue-grade equipment was installed only on an air-conditioning heat 
pump. At the penthouse, the reference metering equipment was connected at the disconnect for 
the chillers. We monitored each phase of the five circuits (three phases each). Each WattNode can 
monitor at most three phases. Thus, five WattNodes were required to monitor all the loads; one for 
each three-phase circuit. 

The 8th floor server load was not metered with the revenue-grade WattNode meter because of the 
already existing healthy variety of loads for comparison and the additional cost. A comparison for 
that load is not presented, as no reference equipment was installed. 

The revenue-grade metering technology that was used to assess the accuracy consisted of 
Continental Control’s WattNode Revenue (RWNC-3Y-480-MB) combined with Continental Control’s 
revenue-grade Accu-CTs. The Accu-CTs provide accuracy of 0.5% and are tested to ANSI C57.13, 
Class 0.6, in conjunction with the associated WattNode, to ensure ANSI C12.1 accuracy (0.5% 
accuracy). The WattNodes are connected to a Campbell Scientific CR-6 data logger via MODBUS 
communications, and data is communicated from that data logger out to a cloud-hosted database 
via cellular communications. Data as collected at 1-min intervals from the Campbell Scientific data 
logger. A typical configuration is shown in Figure 5. 
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Figure 5: Diagram of NREL submetering configuration (three WattNodes shown in the 

diagram, but only two used per panel) 

Final installation for the 7th floor electrical panel (PPD-7) with the circuit-level technology and three 
Continental Control meters are shown in Figure 6. Figure 7 shows the installation at the penthouse. 
The preconfigured CLASP meter box with the disconnect breaker and meter can be seen in Figure 8. 
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(a) (b) (c) 

Figure 6: 7th Floor Installation. CLASP’s CTs, meters, and bridge are shown inside a red box, 
and the Continental Control’s equipment in a white box.  

(a) Panel LD2-7, (b) panel PPD-7, and (c) the bridges for both panels  
(Credit: Willy Bernal Heredia, NREL) 
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Figure 7: Final installation at the penthouse. CLASP’s CTs, meters, and bridge are shown inside 

the red box, and Continental Control’s equipment in the white box  
(Credit: Willy Bernal Heredia, NREL) 

 
Figure 8: CLASP’s meter enclosure box 

QUALITATIVE STUDY DESIGN  

To assess the ease of installation for the circuit-level submetering system, NREL observed the 
electrician’s process for installation during the single-day install. Informal interviews were carried 
out with the electricians after the installation was complete. 

To assess the ability to integrate effectively into the enterprise analytics platform GSA Link, NREL 
discussed with GSA Link administrators potential pathways for data integration. Additionally, NREL 
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evaluated the level of effort of integrating the data collected from the CLASP’s meters into GSA Link. 
NREL leveraged the vendor’s API and uploaded data to an NREL internal server for data storage, 
processing, and analysis. This demonstrates that a similar approach is viable to work with the GSA 
Link system. NREL’s internal server implements the same underlying platform as GSA Link. 

DATA ANALYSIS 

Data from the circuit-level submetering system was pulled via the vendor’s API in 1-min intervals. 
Similarly, the data from the revenue-grade submetering was pulled from the LoggerNet (data 
logger) website in 1-min intervals. The data was aligned on timestamp, such that the value at each 
timestep could be compared between systems. 

To calculate the accuracy of the power and energy readings from the circuit-level submetering 
system, bias and normalized bias (or percent error) were calculated for every timestep during the 
observation period. The bias between the two readings is defined as: 𝑥𝑥meas − 𝑥𝑥obs, where 𝑥𝑥meas is 
the EUT’s measurement and 𝑥𝑥obs is the revenue-grade submetering. Percent error is defined as 
(𝑥𝑥meas − 𝑥𝑥obs)/𝑥𝑥obs. Both the bias and the percent error were then averaged over all timesteps 
and reported as the mean bias and the average percent error. These values show whether the 
measurements were consistently high or low on an absolute and percent basis, respectively.  

These errors were then summarized into a root mean squared percent error (RMSPE) to quantify the 
magnitude of the combined error in the measurements. RMSPE is defined in Eq. 1. 

RMSPE =  �
∑ �𝑥𝑥meas−𝑥𝑥obs

𝑥𝑥obs
�
2

𝑛𝑛
𝑖𝑖=1

𝑛𝑛
            Eq. 1 

It was critical to use the root mean squared percent error instead of simply the root mean squared 
error because of the variability in some of the loads. For highly variable loads, larger absolute errors 
can occur at higher loads, where the actual percent error is the same as at a lower load point. This 
fact skews the root mean squared error metric (as well as standard deviations), although their 
accuracy on a percent basis is consistent across the measurements. Therefore, all errors were 
reported on a percent basis to the reference measurements. 

To assess the total uncertainty of the EUT’s measurements, it was necessary to account for the 
uncertainty of the reference sensor (provided by the manufacturer). The total uncertainty should 
consider the uncertainty of the reference sensor and the estimated uncertainty of the EUT system to 
the reference sensors (see Eq. 2). 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖CLES = �(𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈CLES/REF)2 + (𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈REF)2   Eq. 2 

III. Demonstration Results 
This section describes the quantitative and qualitative results from the field deployment. Section A 
presents the results for accuracy in the field. Section B presents the results for the qualitative 
objectives of ease of installation and ease of integration into GSA Link. Table 5 summarizes the 
performance objectives with its respective results. 
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Table 5: Performance Objectives and Results 

Quantitative 
Objectives 

Metrics and Data 
Requirements Success Criteria M&V Results 

Submeter 
Accuracy In-
Situ Field 
Demonstration 

• Current 
• Voltage 
• Power 
• Power factor 
• Energy 

• Measurement accuracy of energy 
consumption (as cumulated over 
2–4 weeks) of +/- 10% 

• Measurement accuracy of  
+/-10% for total power 
measurements9 

• >95% data availability over the 
course of the demonstration 

Partial: Total 
energy error was 
<2% for all Wye 
loads. Delta loads 
showed higher 
errors at low power 
factors 

Qualitative 
Objectives 

Metrics and Data 
Requirements 

Success Criteria M&V Results 

Ease of 
Installation 
and 
Integration 
with GSA 
IT/Enterprise 
Systems 

• Level of technical 
expertise required 

• Time required to 
install and configure 

• Customer labor 
associated with install 

• Data integration 
requirements 

• Security requirements 
• Ease of visualizing 

and downloading 
data 

• Ability to be installed in the 
majority of GSA’s electrical panels 

• Ability to integrate into GSA Link 
infrastructure 

• Generally applicable to >70% of 
GSA facilities 

Met: Successfully 
and efficiently 
installed in a variety 
of panels. 
Demonstrated 
integration in 
software 
components of GSA 
Link. 

Total Cost of 
Ownership, 
Value 
Proposition 
and Cost-
Effectiveness 

• Installation and O&M 
cost 

• Energy and cost 
savings identified 

• Value of tenant billing 
• Value of FDD 

• Potential savings exceeds 
expected installation, O&M costs 

• Software offers measurement 
and analytics capabilities that 
address industry needs 

• Data from software can be 
utilized to identify a sizable 
portion of the faults and ECMs 
identified by the GSA Link 
software (75% or more) 

• Determine if life cycle is cost-
effective as a stand-alone 
platform 

Met: Technology 
demonstrated 
ability to identify 
relevant behavior 
(e.g., cycling, 
on/off, seasonal 
trends)  

 
9 Evaluation of meter accuracy during laboratory testing demonstrated that comparison to stated accuracy in product literature was not 
appropriate for field testing success criteria. Accuracy values in product literature were developed using controlled voltage/current sources and 
are not reflective of in-field operation and therefore should not be the success criteria for this objective. 
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A. QUANTITATIVE RESULTS 

SITE DEPLOYMENT 

i. Objective 1 (Quantitative): Submeter Accuracy in Field Deployment 
The EUT was installed in the César E. Chávez Memorial Building in Denver, Colorado. Accuracy 
analysis was performed on three loads in two panels (PPD-7 and LD2-7) on the 7th floor and two 
equipment disconnects in the penthouse. Loads that were monitored with both the EUT and the 
high-accuracy NREL submetering system include one fan-powered VAV, panel mains, one AC heat 
pump, and two centrifugal chillers. 

During the field deployment, the EUT was deployed in the standard approach suggested by the 
vendor; each three-phase circuit was monitored with one three-phase DinRail Meter. 

Results show that the EUT captured the trend of the load profile closely, even for high-variability 
loads. Figure 9 shows one day of measured data for the panel mains (PPD-7) and for the fan-
powered VAV box, comparing reference data to EUT’s data. The panel mains represent a load that 
does not cycle significantly, whereas the VAV system exhibits large power swings during periods 
when the system turns on/off. The CLASP output follows very closely the readings from the revenue-
grade metering. 

 
Figure 9: Representative time series data comparing measured data from the CLASP meters 
with NREL submetering (Reference). The figure shows the power consumption of the panel 

mains (left) and the VAV for one day. 

The total energy error for those loads was calculated to be less than 2%. NREL calculated the RSMPE 
of the CLASP’s readings with respect to the reference ones. RSMPE provides a normalized measure 
of how far the measured readings are from the reference data points (revenue-grade meter’s 
readings). In other words, it tells you how closely the CLASP measurements track the reference ones 
normalized by the magnitude of the reading. For all loads, RSMPE was low (<2%). Table 6 shows the 
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uncertainty for all loads during September 2019. During this month, the total energy error was 
found to be below 2% for all loads, except for the chiller loads. The average error and RSMPE are 
also small for most loads. The VAV and the chillers present larger RSMPE as the loads shows high 
power swings due to contrasting power levels (ON vs. OFF). For the VAV, this occurs mainly due to 
misalignment in the data between the reference and CLASP’s meters; data streams cannot be 
aligned perfectly due to the 1-min resolution and asynchronous clocks. The data from the chillers 
were split to analyze two distinct scenarios: data when chillers are idling (≤2.5 kW) and all chiller 
data. This distinction was made due to the observation that accuracy was affected significantly when 
chillers were online but unloaded. 

Table 6: Data Statistics for September 2019 

Trial Equipment Range # Points 
Ref. Avg. 

Power 
(kW) 

Average 
Percent 

Error (%) 

RMSPE 
(%) 

Total 
Energy 

Error (%) 

1 Fan-Powered VAV All 2,280 0.4 3.5 23.1 0.8 

2 Mains All 2,280 1.1 1.8 3.1 1.7 

3 Chiller 1 
All 2,280 11.7 223.7 304.8 13.8 

>2.5 kW 308 79.3 1.14 2.3 1.1 

4 Chiller 2 
All 2,280 15.8 190.6 293.6 9.0 

>2.5 kW 491 68.4 1 2.7 0.9 

 

The chillers needed a closer inspection because these meters had the highest error when 
considering all data points. During the monitoring months, the chillers had low energy consumption 
due to being idle most of the time (Figure 10). Both chillers take turns meeting the demand because 
only one is allowed to run at any given time to operate at higher part-load ratio to increase 
equipment efficiency. This fact intensifies the downtime for each chiller. We expect to have higher 
energy consumption (and diminished idling time) during warmer months. The chillers are the only 
loads connected in a Delta configuration. From the measurements, NREL researchers noticed that 
the CLASP’s meters perform very well when the chillers are active (>2.5kW). The RMSPE and total 
energy error drop below 4% and 2%, respectively, if only considering the times when the chillers are 
operating (vs. idling). Average error and RMSPE increases significantly when the units are inactive 
(but online [≤2.5 kW]). As power consumption is small, total energy error only increases slightly and 
not in the same magnitude as the average error or RMSPE. The total energy error for all data points 
is 13.8% and 9.0% for Chiller 1 and Chiller 2, respectively. 
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Figure 10: Chillers’ power consumption for one week 

All loads, except the chillers, are wired in a Delta configuration as it is ideal for large motors that do not 
require a neutral wire. The CLASP can monitor Delta loads but might face discrepancies when Delta-
phase connection is combined with low power factor and current, which is the case during the idling 
periods of the chillers (see Figure 10). For all the Wye-configuration loads, the accuracy is not visibly 
impacted at low power factor and low currents. During the analysis period, the chillers were idle most of 
the time; it is possible for the error to accumulate over a month and become relevant (~10%). The CLASP 
manufacturers offered that there is a correlation between this behavior and the configuration type, 
because the ULTRA DinRail meters are designed for Wye (star) phases connection loads and might incur 
increased errors at low power factors and current levels. The manufacturer is currently working on new 
generation DinRail meters that provide improved accuracy for Delta loads. Finally, using higher accuracy 
CTs for Delta loads, specifically, can help mitigate this behavior. 

B. QUALITATIVE RESULTS 

i. Qualitative Objective 1: Ease of Installation and Integration with GSA Link System 

a. Installation Summary 
The circuit-level technology evaluated in this report makes it easier to meter individual loads in a 
panel due to small form factor components (e.g., CTs and bridge), wired CTs and bridge, and 
preconfigured cloud-hosted data storage. However, the most appropriate scenario would be to 
monitor specific loads or panel mains, as each three-phase load requires an additional meter. The 
single-circuit technology features a standard approach for metering loads: wired split-core CTs and 
voltage taps. The technology is applicable for any standard electrical panel, and can also be used to 
monitor large device disconnects. 
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Installation of the CTs requires the opening of the electrical panel cover and, therefore, requires a 
licensed electrician for the install (per applicable safety and contracting requirements). During the 
installation for this technology demonstration, the entire installation was able to be performed 
without de-energizing the panel because disconnecting a single breaker was sufficient. 

Once the CTs are installed, a straightforward process is required to associate the unique identifier 
associated with each sensor to its location within the electrical panel. This creates a mapping from 
the individual sensor to the specific load/phase that it is metering, and generates associated 
metadata that the web interface uses to provide insight, analytics, and rules/alarms. 

To transport the data from the single-circuit bridge to the cloud-hosted data storage, one can use 
the built-in ethernet jack, Wi-Fi, or cellular (3G GSM) communications. There is a SIM card slot in the 
CLASP’s bridge, and this can be used to connect to optional cellular connections. Due to the pilot 
nature of this technology demonstration, it was desirable to use cellular communication and avoid 
connecting to the building ethernet. This was primarily due to project timeline considerations 
because there was a lengthy cybersecurity review and approval process for connecting a new device 
to the LAN. The initial cyber review did not flag any concerns with the device and allowed 
installation for the pilot project with cellular communications. 

The installation of the meters at the César E. Chávez Memorial Building comprised 3 separate CLASP 
bridges that collected data from 18 individual CTs, distributed in two panels and two HVAC 
equipment disconnects. The installation took place in one day and required six hours of a single 
electrician. The meters were preconfigured by the CLASP’s distributor, Madison Electric Inc., who set 
up three electrical boxes; each with two CLASP’s meters and one breaker disconnect. The breaker 
was not required but installed for convenience and safety. The final setup on each meter box is 
shown in Figure 5. The preconfiguration step streamlined the installation process and permitted 
minimal space requirements inside the electrical panel; this configuration only requires the cable 
connections and the CTs inside the panel. 

There were no significant challenges with the installation because there was no need to mount 
electrical boxes (as in the case of the reference meter). As noted, this installation used 3G cellular to 
transport the data from the bridge to the cloud using the built-in cellular capabilities and antenna 
provided by the CLASP’s bridge. The 3G cellular approach enabled a streamlined pilot project 
timeline and required minimal additional labor hours. However, a monthly cell subscription was 
needed for data transmission during the length of deployment. This will not be required when 
ethernet drops are available for the meters to connect into directly. Within a few days after the 
installation, the metered data was available for visualization, downloading, and analysis via the web-
based user interface or the API. 

The technology has been designed and is advertised as a stand-alone system for data analytics and 
reporting. However, the technology can be integrated with GSA Link, a system that connects the 
building management system to a central cloud-based platform using SkySpark.10 During the 
accuracy verification analysis, NREL pulled data through the vendor’s API and uploaded it to an NREL 

 
10 SkySpark is a platform for storing, visualizing, and analyzing building information data. https://skyfoundry.com/ 

 

https://skyfoundry.com/
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SkySpark server for data storage, processing, and analysis. This demonstrates that a similar 
approach is viable to work with the GSA Link system. The only significant challenge is expected to be 
ensuring firewall exception requests to be able to access the web-hosted data storage via the 
supplied API. With the API documentation, NREL engineers developed a stand-alone Python script, 
based on an example provided by the vendor, which can communicate with the CLASP API and store 
the data locally to be later uploaded into GSA Link or other analytics platforms. 

Additionally, the vendor also offers a data analytics platform that can be leveraged directly without 
the need to use the GSA Link platform. This can provide energy savings strategies, fault diagnostics, 
and data visualization (e.g., charts and trends) for buildings without a BAS. NREL did not verify the 
capabilities or effectiveness of those features. 

C. TOTAL COST OF OWNERSHIP AND COST-EFFECTIVENESS 

i. Qualitative Objective 2: Value Proposition and Cost-Effectiveness Analysis 

The metering technology permits multiple value propositions, as shown in Figure 2. NREL 
collected manufacturer information to estimate the total cost of ownership. This will prove 
useful in understanding the value proposition of the technology once specific cases have 
been identified. An extensive cost-effective analysis of the technology was outside the 
scope of this project. No ECMs were identified using the CLASP, but it is very likely that the 
technology can be leveraged for that purpose. The loads monitored during this deployment 
were not used for overtime utilities. However, it can be shown that the accuracy meets 
standards to provide those services. 

a. Total Cost of Ownership 
The total cost of ownership includes labor (e.g., installation and commissioning), capital costs (e.g., 
meters), and operation expenses. NREL calculated the total cost for the pilot deployment from 
information provided by the vendor (see Table 7 and Table 8). The cost of the CLASP decreases 
significantly if equipment is purchased in larger quantities. Thus, it was calculated what the per-
point price is at those larger volumes as well. 
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Table 7: Per-Point Cost for Pilot Pricing 

Category Equipment Quantity Unit Cost Total 

Meter +  
CTs 

D-Rail ULTRA Meter 400A 
(200–285 VAC) 1 $398.2 $398.2 

D-Rail ULTRA Meter 63A 
(200–285 VAC) 1 $213.4 $213.4 

D-Rail ULTRA Meter 63A 
(100–240 VAC) 2 $213.4 $426.8 

D-Rail ULTRA Meter 600A 
(200–285 VAC) 2 $395 $790 

Gateway Meazon Janus 3 $330 $990 

Total Cost (Parts Only) $2,818.4 

Per-Point Cost (Parts Only) $470 

Table 8: Total Cost of Ownership for Pilot Deployment 

Category Description Company Cost 

Parts Meazon meters, gateways Meazon $2,818 

Preconfiguration 
Configure meter, breaker into electrical 

box 
Madison 
Electric 

$2,140 

Electrical 
Installation 

Electrician work: install meters already 
preconfigured 

Ventura 
Electric, Inc. 

$450 

Operation Cost Subscription fees N/A $0 

Total Cost $5,408 

Per-Point Cost (Parts + Installation) $901 

Per-Point Cost (Parts Only) $470 

 
The previous cost shows the per-point cost for the pilot project. However, cost of equipment can 
significantly be lowered if equipment is purchased in large volumes. Table 9 shows per-point cost if 
large units of equipment were purchased; at least 1,000 meters and at least 100 gateways are 
required for the lower price. Fifteen meters per gateway is used in the analysis because that is the 
maximum number of meters compatible with a single gateway. The data can be visualized from the 
gateway browser at no extra cost. 
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Table 9: Per-Point Cost for Larger-Volume Pricing 

Category Equipment Quantity Unit Cost Total 

Meter  
(>1,000 units) D-Rail ADVANCED Meter 15 $89 $1,335 

CTs CT 45 $11 $495 

Gateway 
(>100 units) Meazon Janus 1 $150 $150 

Total Cost (Parts Only) $1,980 

Per-Point Cost (Parts Only) $132 

b. Identification of ECMs 
Identification of ECMs was not included in this project, but the capabilities of the system that enable 
identification of ECMs is covered below. The vendor also provided an advanced internet-of-things 
(IoT) platform smart building service that can combine other type of sensors in multi-site distributed 
architectures. Screenshots of the dashboard and analytics platform are included in Appendix V.B. 
Pricing for this type of service depends on specific customer needs and ranges from $12 to $48 per 
meter per year, depending on requested service features. From the high-resolution data from the 
meter, GSA staff can identify cycling behavior (see Figure 11), determine when loads are turned on 
or off, and monitor if loads are working properly and in the right schedule. Figure 10 clearly shows 
that both chillers operate at separate times to achieve higher efficiency by avoiding running both 
chillers at low part-load ratio. The accurate and high-resolution (1-min) data can provide visibility 
into the energy consumption patterns, identify potentially inefficient device operation, and identify 
opportunities to reduce energy. 
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Figure 11: Fan-powered VAV (FPVAV) cycling behavior (1-min data) 

c. Overtime Utility Billing 
The loads instrumented during the deployment did not incur in overtime utilities, and a cost-
effectiveness analysis was outside the scope of this project. Nonetheless, the results clearly show 
the CLASP’s ability to satisfactorily calculate energy consumption for all loads in the deployment.  

IV. Summary Findings and Conclusions 

A. OVERALL TECHNOLOGY ASSESSMENT AT DEMONSTRATION 
FACILITY 
Installation of the CLASP technology at the César E. Chávez Memorial Building successfully met 
most, but not all, of the performance objectives laid out in the demonstration plan. The system met 
the data completeness expectations during the field evaluation, as the meters did achieve a 95% 
data transmission rate; the system suffered from data loss (~5%) due to communication problems or 
interference. The system exceeded expectations for accuracy for the Wye configuration (but not for 
Delta loads) and the ease of integration with existing GSA enterprise systems, such as GSA Link. 

Three primary goals for studying this technology were to assess: 
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1. Accuracy, resolution, and reliability of the data to provide tenant billing services; 

2. Ease of installation, data retrieval, and integration with legacy systems (e.g., GSA Link); and 

3. Total cost of ownership of the system (including meters, gateway, and any required 
recurring costs to be able to access metered data). 

For the Wye configuration, the meters successfully met all predefined goals. The accuracy targets 
were met, as the system’s measurements differed by less than 2% from the revenue-grade meter’s 
readings. It was demonstrated that data automatically downloaded from the vendor’s API can be 
integrated into the primary software component on the GSA enterprise-level energy management 
and information system, GSA Link. The CLASP’s meters did not meet the accuracy requirements for 
the chillers. They were wired in a Delta configuration and the meters did not perform well at low 
power factor levels (idling of the chillers). Despite that, the system tracked the load closely when the 
chillers were running. The EUT can provide accurate power readings cost-effectively, as no 
subscription fee is required to access the meter data. 

The demonstration of EUT data integration expands the opportunities for FDD across the GSA 
portfolio. 

• For buildings with an existing GSA Link deployment, this would enable the monitoring of 
additional end uses.  

• For buildings that do not have GSA Link deployed, the GSA SkySpark platform could be used 
with the single-circuit data. This would provide an FDD capability for these buildings (albeit 
with reduced functionality) without full BAS integration and GSA Link deployment. 

• Finally, this approach would deliver FDD functionality for buildings where a centralized BAS 
does not exist, enabling FDD for a set of GSA buildings that would not have this capability 
otherwise.  

Overall, we conclude that the EUT can provide insightful high-resolution data as outlined in the 
performance objectives. With this information, the building manager can (1) identify ECMs leading 
to measurable savings and (2) address identified ECMs, thereby reducing the utility costs and saving 
energy.  

B. LESSONS LEARNED AND BEST PRACTICES 
The key lessons learned during this demonstration include the following: 

• It is critical to independently verify the installation and configuration of the meters to 
ensure the intended operation. Errors at this stage are increasingly more difficult to correct 
as time progresses. 

o During the deployment, the installation work was not verified after the installation; 
the electrician replaced the panel dead front before independent verification could 
be performed. An unexplained discrepancy was identified between the reference 
and the CLASP’s measurements for one of the loads. The discrepancy could be 
attributed to installation errors. The reference meters were removed before that 
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discrepancy was analyzed and addressed. Therefore, a determination could not be 
made for the discrepancy, and the load was removed from the analysis.  

• Preconfiguration by a technology distributor saves time and ensures modular installation. 
The enclosure saved space inside the panel and allowed for debugging and troubleshooting 
later, because it does not require the electrical panels to be opened to visualize the meters. 
However, care must be exercised to ensure proper installation. 

o The original plan was to meter the 7th floor server load and the AC equipment 
conditioning that unit to calculate power usage effectiveness. The AC equipment 
and the server were powered from different electrical rooms. The CLASP’s 
distributor preconfigured the meters for the server circuits and the AC equipment in 
the same physical enclosure (Figure 5), which made it impossible to realize the 
desired configuration. Thus, the CLASP's meter was repurposed to monitor a 
different server load. As a result, this configuration made it impossible to calculate 
the servers’ power usage effectiveness. 

• The meter closely tracks power consumption for loads in the Wye configuration in par with 
revenue-grade metering. However, there were some discrepancies at low power factors 
(idling equipment) for the Delta configuration. The vendor recommends opting for its new 
meters for this specific configuration to address that issue. The manufacturer stated that 
the new FCC certified Cerberus DinRail meter can measure DELTA loads with same 
accuracy as Y loads in low-power factors and powers. 

• Access to and utilization of the data can be achieved either through the native user 
application provided by the vendor or by API access. The API access enables integration of 
the data with marginal effort into existing analytics platforms, such as GSA Link. 

• Identification of the circuits for observation can be a time-intensive process. It is important 
to have clear goals as to the site’s monitoring objectives before deployment.  

• If using a single CT on three-phase equipment, the load should be well balanced. This could 
be achieved through knowledge of the specific load or spot check of amperage. 

• It is not always easy or possible to clearly identify which loads are associated with which 
circuits. This can result from inaccurate panel schedules, obscure naming conventions, or 
lack of circuit tracing. This is important to consider when trying to isolate monitoring to a 
specific tenant, space, or set of devices. Circuit tracing can be executed to match all loads to 
panel circuits, though this may be an expensive process for locations with many low-load 
receptacles. 

• A registered electrician will be required to install the system per site safety requirements. 
Special attention should be given to the installation of the voltage tap, where required. 

C. DEPLOYMENT RECOMMENDATIONS 
The EUT system was installed in an existing building. However, it could have been implemented in 
new construction just as easily. The acquisition system is flexible and allows single or three-phase 
panels, multiple voltage configurations (e.g., 120 V, 240 V, or 480 V), and power levels with non-
proprietary CTs (available from multiple manufacturers and with different accuracy ratings). The 
CLASP can potentially do full panel readings (42+ circuits), because multiple CLASP meters can be 
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used in a modular manner using one wireless gateway to transmit data to the monitoring 
application. However, this might be not practical (or even feasible) as the configuration requires one 
meter per 3-phase circuit. The CLASP is best suited for large consumption devices (e.g., chiller) or 
critical ones for metering, FDD, or energy visibility because they can report data down to per-second 
level using wireless Zigbee communication. 

The bridge collects sensor information at fast rates and must be installed in the vicinity of the panel 
box to ensure smooth communication and avoid package drops. Also, line of sight was important to 
ensure reliable communication between the wireless meters and the gateway even if both pieces of 
equipment were in the same electrical room. We recommend installing only one bridge per 
electrical room to serve all meters in short distances. This will ensure minimum interference 
between other equipment. Furthermore, the bridge requires strong Wi-Fi or cell signals to avoid 
package drops and missing readings. Heavy concrete construction, metal enclosures, and 
interference from other wireless sources could reduce signal strength. If the signal is weak, NREL 
recommends installing an extender for Wi-Fi and choosing a wireless carrier that provides a strong 
signal in the case of cell coverage. While the connection to the LAN will entail cybersecurity approval 
(and associated challenges), this would, in theory, provide the most reliable delivery of data from 
the meter to its cloud-storage database. 

To decrease measurement uncertainty, it is recommended to size CTs to estimated power levels (if 
possible), as opposed to rated breaker values. This may be achieved by metering current with a 
clamp ammeter or understanding the equipment ratings served by that breaker to estimate 
amperage draw and effectively size the CT accordingly. Caution should be exercised to avoid under-
sizing the CT because it might lead to inaccurate readings and, eventually, a damaged CT. The 
vendor recommended installing higher-accuracy CTs for error-sensitive applications. The 
incremental cost of those CTs is only about 10% more. 

The CLASP has applicability throughout the GSA portfolio. It will provide the most value where 
specific devices or end uses can be identified as requiring accurate power data at a low cost. For 
example, devices with high power consumption, devices with uncertain schedules, and tenant-
owned equipment (specifically those operating 24/7) are all scenarios where this technology will 
deliver significant insight and has the potential to drive more significant savings. Additionally, loads 
and devices that are not integrated into the BAS may be worth considering for monitoring via this 
technology. It provides the capability to apply FDD to those systems where typically they are not 
monitored on an ongoing basis.  
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V. Appendices 

A. MANUFACTURER CUT SHEET 
Table 10: Meazon DinRail Three-Phase ULTRA11 

Category Description 

Architecture ZigBee Mesh Network 

Frequency band 2.4 GHz 

Minimum data 
communication 
interval 

1 second (default 5 min) 

Operating voltage / 
frequency (model 
depended) 

100–240 VAC / 45–65 Hz 

200–285 VAC / 45–65 Hz 

Ranges of measured 
parameters (model 
depended) 

Voltage: 0–240 VAC phase-to-neutral, 45–65 Hz 

Voltage: 0–285 VAC phase-to-neutral, 45–65 Hz 

Current: up to 600 amperes 

Electric parameters 
measured 

Irms, Vrms, frequency, active power and energy, 
reactive power and energy 

Build-in data log 
record 

25 days 

Dimensions 27.8 x 80 x 59.6 mm (WxHxD) 

Security AES encryption 128 bits 

  

 
11 Specifications obtained from documents provided by Meazon. 
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B. USER INTERFACE 

 
Figure 12: GUI home 

 
Figure 13: Energy monitoring dashboard 
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Figure 14: Energy monitoring dashboard: daily power consumption (AC785) 

 
Figure 15: Analytics dashboard: energy consumption at different timescales (AC785) 
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Figure 16: Analytics dashboard: daily energy consumption (AC785)  

 
Figure 17: Analytics dashboard: monthly energy consumption (AC785) 
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